Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-13
    Description: Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jahn, Reinhard -- Fasshauer, Dirk -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Oct 11;490(7419):201-7. doi: 10.1038/nature11320.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. rjahn@gwdg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23060190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Exocytosis/*physiology ; Humans ; Lipid Metabolism ; Models, Biological ; SNARE Proteins/chemistry/metabolism ; Synaptic Vesicles/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-26
    Description: Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and gamma-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farsi, Zohreh -- Preobraschenski, Julia -- van den Bogaart, Geert -- Riedel, Dietmar -- Jahn, Reinhard -- Woehler, Andrew -- New York, N.Y. -- Science. 2016 Feb 26;351(6276):981-4. doi: 10.1126/science.aad8142. Epub 2016 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Tumor Immunology, Radboud University Medical Center, 6525GA Nijmegen, Netherlands. ; Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. rjahn@gwdg.de. ; Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. Deutsche Forschungsgemeinschaft (DFG) Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Gottingen, 37073, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912364" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-25
    Description: Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A, which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis. However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, co-reconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409895/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409895/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Bogaart, Geert -- Meyenberg, Karsten -- Risselada, H Jelger -- Amin, Hayder -- Willig, Katrin I -- Hubrich, Barbara E -- Dier, Markus -- Hell, Stefan W -- Grubmuller, Helmut -- Diederichsen, Ulf -- Jahn, Reinhard -- P01 GM072694/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Oct 23;479(7374):552-5. doi: 10.1038/nature10545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22020284" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cholesterol ; Membrane Microdomains/*chemistry/metabolism ; Microscopy, Confocal ; Molecular Dynamics Simulation ; Nerve Tissue Proteins/metabolism ; PC12 Cells ; Phosphatidylinositol 4,5-Diphosphate/*chemistry/*metabolism ; Phosphoric Monoester Hydrolases/metabolism ; *Protein Binding ; Rats ; *Static Electricity ; Syntaxin 1/*chemistry/*metabolism ; Unilamellar Liposomes/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-02
    Description: Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Javier M -- Stein, Alexander -- Behrmann, Elmar -- Riedel, Dietmar -- Cypionka, Anna -- Farsi, Zohreh -- Walla, Peter J -- Raunser, Stefan -- Jahn, Reinhard -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1581-4. doi: 10.1126/science.1221976. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Lipid Bilayers/chemistry/*metabolism ; *Liposomes/chemistry/metabolism ; *Membrane Fusion ; Protein Binding ; Protein Conformation ; Rats ; SNARE Proteins/chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-31
    Description: During intracellular membrane trafficking, N-ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) disassemble the soluble NSF attachment protein receptor (SNARE) complex for recycling of the SNARE proteins. The molecular mechanism by which NSF disassembles the SNARE complex is largely unknown. Using single-molecule fluorescence spectroscopy and magnetic tweezers, we found that NSF disassembled a single SNARE complex in only one round of adenosine triphosphate (ATP) turnover. Upon ATP cleavage, the NSF hexamer developed internal tension with dissociation of phosphate ions. After latent time measuring tens of seconds, NSF released the built-up tension in a burst within 20 milliseconds, resulting in disassembly followed by immediate release of the SNARE proteins. Thus, NSF appears to use a "spring-loaded" mechanism to couple ATP hydrolysis and unfolding of substrate proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryu, Je-Kyung -- Min, Duyoung -- Rah, Sang-Hyun -- Kim, Soo Jin -- Park, Yongsoo -- Kim, Haesoo -- Hyeon, Changbong -- Kim, Ho Min -- Jahn, Reinhard -- Yoon, Tae-Young -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1485-9. doi: 10.1126/science.aaa5267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. ; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Korea Institute for Advanced Study, Seoul 130-722, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. rjahn@gwdg.de tyyoon@kaist.ac.kr. ; National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. rjahn@gwdg.de tyyoon@kaist.ac.kr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814585" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Cattle ; Cricetinae ; Fluorescence Resonance Energy Transfer ; Hydrolysis ; N-Ethylmaleimide-Sensitive Proteins/*metabolism ; Rats ; SNARE Proteins/*metabolism ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/*metabolism ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  54. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (gmds); 20090907-20090910; Essen; DOC09gmds069 /20090831/
    Publication Date: 2009-08-31
    Keywords: HPV-Impfung ; Akzeptanz ; Empfehlungen ; ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  17. Deutscher Kongress für Versorgungsforschung (DKVF); 20181010-20181012; Berlin; DOC18dkvf149 /20181012/
    Publication Date: 2018-10-13
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  Evidenz und Entscheidung: System unter Druck; 10. Jahrestagung des Deutschen Netzwerks Evidenzbasierte Medizin; 20090305-20090307; Berlin; DOC09ebmP4.5 /20090304/
    Publication Date: 2009-03-20
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CELLS ; CELL ; Germany ; MICROSCOPY ; PATHWAY ; imaging ; PROTEIN ; SAMPLES ; RESOLUTION ; REDUCTION ; CYCLE ; SIGNAL ; RELAXATION ; PATTERNS ; NUMBER ; NUCLEUS ; MAMMALIAN-CELLS ; intermediate filaments ; INTERMEDIATE-FILAMENTS ; FLUORESCENCE ; ORGANIZATION ; DYE ; ELIMINATION ; intermediate filament ; INCREASE ; FLUORESCENCE MICROSCOPY ; LIFE ; NUCLEAR ; STIMULATED-EMISSION ; DEPLETION ; EXCITATION ; neuron ; BARRIER ; BREAKING ; endosome ; FILAMENTS ; IMPROVEMENT ; photobleaching ; PHOTON ; STED MICROSCOPY ; stimulated emission depletion illumination ; subdiffraction ; triplet state
    Abstract: We demonstrate far-field fluorescence microscopy with a focal-plane resolution of 15-20 nm in biological samples. The 10- to 12-fold multilateral increase in resolution below the diffraction barrier has been enabled by the elimination of molecular triplet state excitation as a major source of photobleaching of a number of dyes in stimulated emission depletion microscopy. Allowing for relaxation of the triplet state between subsequent excitation-depletion cycles yields an up to 30-fold increase in total fluorescence signal as compared with reported stimulated emission depletion illumination schemes. Moreover, it enables the reduction of the effective focal spot area by up to approximate to 140-fold below that given by diffraction. Triplet-state relaxation can be realized either by reducing the repetition rate of pulsed lasers or by increasing the scanning speed such that the build-up of the triplet state is effectively prevented. This resolution in immunofluorescence imaging is evidenced by revealing nanoscale protein patterns on endosomes, the punctuated structures of intermediate filaments in neurons, and nuclear protein speckles in mammalian cells with conventional optics. The reported performance of diffraction-unlimited fluorescence microscopy opens up a pathway for addressing fundamental problems in the life sciences
    Type of Publication: Journal article published
    PubMed ID: 16864773
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Germany ; MICROSCOPY ; PROTEIN ; COMPONENTS ; RESOLUTION ; RELEASE ; ACTIVATION ; DOMAIN ; PLASMA ; MEMBRANE ; FUSION ; endocytosis ; PLASMA-MEMBRANE ; REVEALS ; FLUORESCENCE ; VESICLES ; FLUORESCENCE MICROSCOPY ; STIMULATED-EMISSION ; EXOCYTOSIS ; FATE ; TRANSMISSION ; DEPLETION ; TRANSMITTER ; HIPPOCAMPAL SYNAPSES ; FROG NEUROMUSCULAR JUNCTION
    Abstract: Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter(1). Although many aspects of vesicle recycling are understood, the fate of the vesicles after fusion is still unclear. Do their components diffuse on the plasma membrane, or do they remain together? This question has been difficult to answer because synaptic vesicles are too small (similar to 40 nm in diameter) and too densely packed to be resolved by available fluorescence microscopes. Here we use stimulated emission depletion (STED)(2) to reduce the focal spot area by about an order of magnitude below the diffraction limit, thereby resolving individual vesicles in the synapse. We show that synaptotagmin I, a protein resident in the vesicle membrane, remains clustered in isolated patches on the presynaptic membrane regardless of whether the nerve terminals are mildly active or intensely stimulated. This suggests that at least some vesicle constituents remain together during recycling. Our study also demonstrates that questions involving cellular structures with dimensions of a few tens of nanometres can be resolved with conventional far-field optics and visible light
    Type of Publication: Journal article published
    PubMed ID: 16612384
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...