Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-04-20
    Description: Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.
    Keywords: Genetics, Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-02
    Description: The cyclinD:CDK4/6:Rb axis is dysregulated in a variety of human cancers. Targeting this pathway has proven to be a successful therapeutic approach in ER + breast cancer. In this study, in vitro and in vivo preclinical breast cancer models were used to investigate the expanded use of the CDK4/6 inhibitor, abemaciclib. Using a panel of 44 breast cancer cell lines, differential sensitivity to abemaciclib was observed and was seen predominately in the luminal ER + /HER2 – and ER + /HER2 + subtypes. However, a subset of triple-negative breast cancer (TNBC) cell lines with intact Rb signaling were also found to be responsive. Equivalent levels of tumor growth inhibition were observed in ER + /HER2 – , ER + /HER2 + as well as biomarker selected TNBC xenografts in response to abemaciclib. In addition, abemaciclib combined with hormonal blockade and/or HER2-targeted therapy induced significantly improved antitumor activity. CDK4/6 inhibition with abemaciclib combined with antimitotic agents, both in vitro and in vivo , did not antagonize the effect of either agent. Finally, we identified a set of Rb/E2F-regulated genes that consistently track with growth inhibitory response and constitute potential pharmacodynamic biomarkers of response to abemaciclib. Taken together, these data represent a comprehensive analysis of the preclinical activity of abemaciclib, used alone or in combination, in human breast cancer models. The subtypes most likely to respond to abemaciclib-based therapies can be identified by measurement of a specific set of biomarkers associated with increased dependency on cyclinD:CDK4/6:Rb signaling. These data support the clinical development of abemaciclib as monotherapy or as a combination partner in selected ER + /HER2 – , HER2 + /ER + , and TNBCs. Mol Cancer Ther; 17(5); 897–907. ©2018 AACR .
    Print ISSN: 1535-7163
    Electronic ISSN: 1538-8514
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-05
    Description: Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mills, Ryan E -- Walter, Klaudia -- Stewart, Chip -- Handsaker, Robert E -- Chen, Ken -- Alkan, Can -- Abyzov, Alexej -- Yoon, Seungtai Chris -- Ye, Kai -- Cheetham, R Keira -- Chinwalla, Asif -- Conrad, Donald F -- Fu, Yutao -- Grubert, Fabian -- Hajirasouliha, Iman -- Hormozdiari, Fereydoun -- Iakoucheva, Lilia M -- Iqbal, Zamin -- Kang, Shuli -- Kidd, Jeffrey M -- Konkel, Miriam K -- Korn, Joshua -- Khurana, Ekta -- Kural, Deniz -- Lam, Hugo Y K -- Leng, Jing -- Li, Ruiqiang -- Li, Yingrui -- Lin, Chang-Yun -- Luo, Ruibang -- Mu, Xinmeng Jasmine -- Nemesh, James -- Peckham, Heather E -- Rausch, Tobias -- Scally, Aylwyn -- Shi, Xinghua -- Stromberg, Michael P -- Stutz, Adrian M -- Urban, Alexander Eckehart -- Walker, Jerilyn A -- Wu, Jiantao -- Zhang, Yujun -- Zhang, Zhengdong D -- Batzer, Mark A -- Ding, Li -- Marth, Gabor T -- McVean, Gil -- Sebat, Jonathan -- Snyder, Michael -- Wang, Jun -- Ye, Kenny -- Eichler, Evan E -- Gerstein, Mark B -- Hurles, Matthew E -- Lee, Charles -- McCarroll, Steven A -- Korbel, Jan O -- 1000 Genomes Project -- 062023/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 085532/Wellcome Trust/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- P01 HG004120/HG/NHGRI NIH HHS/ -- P41 HG004221/HG/NHGRI NIH HHS/ -- P41 HG004221-01/HG/NHGRI NIH HHS/ -- P41 HG004221-02/HG/NHGRI NIH HHS/ -- P41 HG004221-03/HG/NHGRI NIH HHS/ -- P41 HG004221-03S1/HG/NHGRI NIH HHS/ -- P41 HG004221-03S2/HG/NHGRI NIH HHS/ -- P41 HG004221-03S3/HG/NHGRI NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM081533/GM/NIGMS NIH HHS/ -- R01 GM081533-01A1/GM/NIGMS NIH HHS/ -- R01 GM081533-02/GM/NIGMS NIH HHS/ -- R01 GM081533-03/GM/NIGMS NIH HHS/ -- R01 GM081533-04/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R01 HG004719-01/HG/NHGRI NIH HHS/ -- R01 HG004719-02/HG/NHGRI NIH HHS/ -- R01 HG004719-02S1/HG/NHGRI NIH HHS/ -- R01 HG004719-03/HG/NHGRI NIH HHS/ -- R01 HG004719-04/HG/NHGRI NIH HHS/ -- R01 MH091350/MH/NIMH NIH HHS/ -- RC2 HG005552/HG/NHGRI NIH HHS/ -- RC2 HG005552-01/HG/NHGRI NIH HHS/ -- RC2 HG005552-02/HG/NHGRI NIH HHS/ -- U01 HG005209/HG/NHGRI NIH HHS/ -- U01 HG005209-01/HG/NHGRI NIH HHS/ -- U01 HG005209-02/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Feb 3;470(7332):59-65. doi: 10.1038/nature09708.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293372" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Copy Number Variations/*genetics ; Gene Duplication/genetics ; Genetic Predisposition to Disease/genetics ; *Genetics, Population ; Genome, Human/*genetics ; *Genomics ; Genotype ; Humans ; Mutagenesis, Insertional/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-21
    Description: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guofan -- Fang, Xiaodong -- Guo, Ximing -- Li, Li -- Luo, Ruibang -- Xu, Fei -- Yang, Pengcheng -- Zhang, Linlin -- Wang, Xiaotong -- Qi, Haigang -- Xiong, Zhiqiang -- Que, Huayong -- Xie, Yinlong -- Holland, Peter W H -- Paps, Jordi -- Zhu, Yabing -- Wu, Fucun -- Chen, Yuanxin -- Wang, Jiafeng -- Peng, Chunfang -- Meng, Jie -- Yang, Lan -- Liu, Jun -- Wen, Bo -- Zhang, Na -- Huang, Zhiyong -- Zhu, Qihui -- Feng, Yue -- Mount, Andrew -- Hedgecock, Dennis -- Xu, Zhe -- Liu, Yunjie -- Domazet-Loso, Tomislav -- Du, Yishuai -- Sun, Xiaoqing -- Zhang, Shoudu -- Liu, Binghang -- Cheng, Peizhou -- Jiang, Xuanting -- Li, Juan -- Fan, Dingding -- Wang, Wei -- Fu, Wenjing -- Wang, Tong -- Wang, Bo -- Zhang, Jibiao -- Peng, Zhiyu -- Li, Yingxiang -- Li, Na -- Wang, Jinpeng -- Chen, Maoshan -- He, Yan -- Tan, Fengji -- Song, Xiaorui -- Zheng, Qiumei -- Huang, Ronglian -- Yang, Hailong -- Du, Xuedi -- Chen, Li -- Yang, Mei -- Gaffney, Patrick M -- Wang, Shan -- Luo, Longhai -- She, Zhicai -- Ming, Yao -- Huang, Wen -- Zhang, Shu -- Huang, Baoyu -- Zhang, Yong -- Qu, Tao -- Ni, Peixiang -- Miao, Guoying -- Wang, Junyi -- Wang, Qiang -- Steinberg, Christian E W -- Wang, Haiyan -- Li, Ning -- Qian, Lumin -- Zhang, Guojie -- Li, Yingrui -- Yang, Huanming -- Liu, Xiao -- Wang, Jian -- Yin, Ye -- Wang, Jun -- 268513/European Research Council/International -- England -- Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992520" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animal Shells/chemistry/*growth & development ; Animals ; Apoptosis Regulatory Proteins/genetics ; Crassostrea/*genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Larva/genetics/growth & development ; Mass Spectrometry ; Molecular Sequence Annotation ; Molecular Sequence Data ; Polymorphism, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, DNA ; Stress, Physiological/genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-05
    Description: Purpose: The response rates of Head and Neck Squamous Cell Carcinoma (HNSCC) to checkpoint blockade are below 20%. We aim to develop a mechanism-based vaccine to prevent HNSCC immune escape. Experimental Design: We performed RNA-Seq of sensitive and resistant HNSCC cells to discover central pathways promoting resistance to immune killing. Using biochemistry, animal models, HNSCC microarray, and immune cell deconvolution, we assessed the role of SOX2 in inhibiting STING-type I interferon (IFN-I) signaling-mediated antitumor immunity. To bypass SOX2-potentiated STING suppression, we engineered a novel tumor antigen–targeted nanosatellite vehicle to enhance the efficacy of STING agonist and sensitize SOX2-expressing HNSCC to checkpoint blockade. Results: The DNA-sensing defense response is the most suppressed pathway in immune-resistant HNSCC cells. We identified SOX2 as a novel inhibitor of STING. SOX2 facilitates autophagy-dependent degradation of STING and inhibits IFN-I signaling. SOX2 potentiates an immunosuppressive microenvironment and promotes HNSCC growth in vivo in an IFN-I-dependent fashion. Our unique nanosatellite vehicle significantly enhances the efficacy of STING agonist. We show that the E6/E7–targeted nanosatellite vaccine expands the tumor-specific CD8 + T cells by over 12-fold in the tumor microenvironment and reduces tumor burden. A combination of nanosatellite vaccine with anti-PD-L1 significantly expands tumor-specific CTLs and limits the populations expressing markers for exhaustion, resulting in more effective tumor control and improved survival. Conclusions: SOX2 dampens the immunogenicity of HNSCC by targeting the STING pathway for degradation. The nanosatellite vaccine offers a novel and effective approach to enhance the adjuvant potential of STING agonist and break cancer tolerance to immunotherapy. Clin Cancer Res; 24(17); 4242–55. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 4903-4904 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Raman spectra of the orientationally disordered phase II of solid ammonia in the intramolecular and lattice regions are reported for the first time. The spectrum of the intramolecular region contains one line for each vibrational mode, broadened by the orientational disorder. The lattice region contains two broad lines near 50 and 280 cm−1, assigned to translational modes, and two central peaks ascribed to rotational relaxation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-10-23
    Description: Organic Letters DOI: 10.1021/acs.orglett.8b02835
    Print ISSN: 1523-7060
    Electronic ISSN: 1523-7052
    Topics: Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-06
    Description: Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin—a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"—as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.
    Keywords: Neuroscience
    Print ISSN: 0022-1007
    Electronic ISSN: 1540-9538
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...