Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-12
    Description: Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Tokiko -- Kiso, Maki -- Fukuyama, Satoshi -- Nakajima, Noriko -- Imai, Masaki -- Yamada, Shinya -- Murakami, Shin -- Yamayoshi, Seiya -- Iwatsuki-Horimoto, Kiyoko -- Sakoda, Yoshihiro -- Takashita, Emi -- McBride, Ryan -- Noda, Takeshi -- Hatta, Masato -- Imai, Hirotaka -- Zhao, Dongming -- Kishida, Noriko -- Shirakura, Masayuki -- de Vries, Robert P -- Shichinohe, Shintaro -- Okamatsu, Masatoshi -- Tamura, Tomokazu -- Tomita, Yuriko -- Fujimoto, Naomi -- Goto, Kazue -- Katsura, Hiroaki -- Kawakami, Eiryo -- Ishikawa, Izumi -- Watanabe, Shinji -- Ito, Mutsumi -- Sakai-Tagawa, Yuko -- Sugita, Yukihiko -- Uraki, Ryuta -- Yamaji, Reina -- Eisfeld, Amie J -- Zhong, Gongxun -- Fan, Shufang -- Ping, Jihui -- Maher, Eileen A -- Hanson, Anthony -- Uchida, Yuko -- Saito, Takehiko -- Ozawa, Makoto -- Neumann, Gabriele -- Kida, Hiroshi -- Odagiri, Takato -- Paulson, James C -- Hasegawa, Hideki -- Tashiro, Masato -- Kawaoka, Yoshihiro -- AI058113/AI/NIAID NIH HHS/ -- AI099274/AI/NIAID NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- T32 AI078985/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):551-5. doi: 10.1038/nature12392. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Cells, Cultured ; Chickens/virology ; DNA-Directed RNA Polymerases/antagonists & inhibitors ; Dogs ; Enzyme Inhibitors/pharmacology ; Female ; Ferrets/virology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology ; *Influenza A virus/chemistry/drug effects/isolation & purification/pathogenicity ; Influenza, Human/drug therapy/*virology ; Macaca fascicularis/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Monkey Diseases/pathology/virology ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae Infections/pathology/transmission/*virology ; Quail/virology ; Swine/virology ; Swine, Miniature/virology ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-19
    Description: Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eastwood, Daniel C -- Floudas, Dimitrios -- Binder, Manfred -- Majcherczyk, Andrzej -- Schneider, Patrick -- Aerts, Andrea -- Asiegbu, Fred O -- Baker, Scott E -- Barry, Kerrie -- Bendiksby, Mika -- Blumentritt, Melanie -- Coutinho, Pedro M -- Cullen, Dan -- de Vries, Ronald P -- Gathman, Allen -- Goodell, Barry -- Henrissat, Bernard -- Ihrmark, Katarina -- Kauserud, Havard -- Kohler, Annegret -- LaButti, Kurt -- Lapidus, Alla -- Lavin, Jose L -- Lee, Yong-Hwan -- Lindquist, Erika -- Lilly, Walt -- Lucas, Susan -- Morin, Emmanuelle -- Murat, Claude -- Oguiza, Jose A -- Park, Jongsun -- Pisabarro, Antonio G -- Riley, Robert -- Rosling, Anna -- Salamov, Asaf -- Schmidt, Olaf -- Schmutz, Jeremy -- Skrede, Inger -- Stenlid, Jan -- Wiebenga, Ad -- Xie, Xinfeng -- Kues, Ursula -- Hibbett, David S -- Hoffmeister, Dirk -- Hogberg, Nils -- Martin, Francis -- Grigoriev, Igor V -- Watkinson, Sarah C -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):762-5. doi: 10.1126/science.1205411. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Science, University of Swansea, Singleton Park, Swansea SA2 8PP, UK. d.c.eastwood@swansea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764756" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/microbiology ; Basidiomycota/classification/enzymology/*genetics/physiology ; *Biodiversity ; Biological Evolution ; Biota ; Cell Wall/*metabolism ; Coniferophyta/microbiology ; Coriolaceae/enzymology/genetics/physiology ; Gene Expression Profiling ; Genes, Fungal ; Genomics ; Lignin/metabolism ; Mycorrhizae/enzymology/*genetics/physiology ; Oxidoreductases/genetics/metabolism ; Peroxidases/genetics/metabolism ; Phylogeny ; Proteome ; Symbiosis ; Trees/*microbiology ; Wood/metabolism/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-30
    Description: Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Floudas, Dimitrios -- Binder, Manfred -- Riley, Robert -- Barry, Kerrie -- Blanchette, Robert A -- Henrissat, Bernard -- Martinez, Angel T -- Otillar, Robert -- Spatafora, Joseph W -- Yadav, Jagjit S -- Aerts, Andrea -- Benoit, Isabelle -- Boyd, Alex -- Carlson, Alexis -- Copeland, Alex -- Coutinho, Pedro M -- de Vries, Ronald P -- Ferreira, Patricia -- Findley, Keisha -- Foster, Brian -- Gaskell, Jill -- Glotzer, Dylan -- Gorecki, Pawel -- Heitman, Joseph -- Hesse, Cedar -- Hori, Chiaki -- Igarashi, Kiyohiko -- Jurgens, Joel A -- Kallen, Nathan -- Kersten, Phil -- Kohler, Annegret -- Kues, Ursula -- Kumar, T K Arun -- Kuo, Alan -- LaButti, Kurt -- Larrondo, Luis F -- Lindquist, Erika -- Ling, Albee -- Lombard, Vincent -- Lucas, Susan -- Lundell, Taina -- Martin, Rachael -- McLaughlin, David J -- Morgenstern, Ingo -- Morin, Emanuelle -- Murat, Claude -- Nagy, Laszlo G -- Nolan, Matt -- Ohm, Robin A -- Patyshakuliyeva, Aleksandrina -- Rokas, Antonis -- Ruiz-Duenas, Francisco J -- Sabat, Grzegorz -- Salamov, Asaf -- Samejima, Masahiro -- Schmutz, Jeremy -- Slot, Jason C -- St John, Franz -- Stenlid, Jan -- Sun, Hui -- Sun, Sheng -- Syed, Khajamohiddin -- Tsang, Adrian -- Wiebenga, Ad -- Young, Darcy -- Pisabarro, Antonio -- Eastwood, Daniel C -- Martin, Francis -- Cullen, Dan -- Grigoriev, Igor V -- Hibbett, David S -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1715-9. doi: 10.1126/science.1221748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Clark University, Worcester, MA 01610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745431" target="_blank"〉PubMed〈/a〉
    Keywords: Basidiomycota/classification/*enzymology/*genetics ; Bayes Theorem ; *Evolution, Molecular ; *Genome, Fungal ; Indoles ; Lignin/*metabolism ; Peroxidases/*genetics/metabolism ; Wood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-07
    Description: The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike alpha2-6-linked receptors and strong preference for a subset of avian-like alpha2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- de Vries, Robert P -- Zhu, Xueyong -- Nycholat, Corwin M -- McBride, Ryan -- Yu, Wenli -- Paulson, James C -- Wilson, Ian A -- GM62116/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R56 AI099275/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311689" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; Humans ; Influenza A Virus, H7N9 Subtype/*metabolism/*pathogenicity ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/virology ; Ligands ; Microarray Analysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-28
    Description: A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Zhen -- Chinoy, Zoeisha S -- Ambre, Shailesh G -- Peng, Wenjie -- McBride, Ryan -- de Vries, Robert P -- Glushka, John -- Paulson, James C -- Boons, Geert-Jan -- AI058113/AI/NIAID NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P41 RR005351/RR/NCRR NIH HHS/ -- P41GM103390/GM/NIGMS NIH HHS/ -- P41RR005351/RR/NCRR NIH HHS/ -- R01 GM090269/GM/NIGMS NIH HHS/ -- R01GM090269/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):379-83. doi: 10.1126/science.1236231.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888036" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Epitopes ; Glycosylation ; Glycosyltransferases/*metabolism ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Lectins/chemistry/*metabolism ; Mass Spectrometry ; Microarray Analysis ; Nuclear Magnetic Resonance, Biomolecular ; Oligosaccharides/biosynthesis/*chemical synthesis/*chemistry/metabolism ; Plant Lectins/chemistry/metabolism ; Ribosome Inactivating Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-28
    Description: All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...