Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-15
    Description: Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perera, Rushika M -- Stoykova, Svetlana -- Nicolay, Brandon N -- Ross, Kenneth N -- Fitamant, Julien -- Boukhali, Myriam -- Lengrand, Justine -- Deshpande, Vikram -- Selig, Martin K -- Ferrone, Cristina R -- Settleman, Jeff -- Stephanopoulos, Gregory -- Dyson, Nicholas J -- Zoncu, Roberto -- Ramaswamy, Sridhar -- Haas, Wilhelm -- Bardeesy, Nabeel -- DP2 CA195761/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA117969-07/CA/NCI NIH HHS/ -- P50CA1270003/CA/NCI NIH HHS/ -- R01 CA133557-05/CA/NCI NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):361-5. doi: 10.1038/nature14587. Epub 2015 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26168401" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acids/metabolism ; Animals ; Autophagy/*genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Carcinoma, Pancreatic Ductal/*genetics/*metabolism/pathology ; Cell Line, Tumor ; Energy Metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Heterografts ; Homeostasis ; Humans ; Lysosomes/genetics/*metabolism ; Mice ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Transplantation ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-21
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390253/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390253/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoncu, Roberto -- Sabatini, David M -- R01 CA103866/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):923-5. doi: 10.1126/science.1207552.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596981" target="_blank"〉PubMed〈/a〉
    Keywords: *Autophagy ; *Cell Aging ; Cytoplasmic Vesicles/*metabolism/ultrastructure ; Endoplasmic Reticulum/metabolism/ultrastructure ; Genes, ras ; Golgi Apparatus/metabolism/ultrastructure ; Humans ; Interleukins/secretion ; Intracellular Signaling Peptides and Proteins/metabolism ; Multiprotein Complexes ; Phagosomes/metabolism/ultrastructure ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism/*secretion ; Secretory Pathway ; TOR Serine-Threonine Kinases ; ras Proteins/metabolism ; trans-Golgi Network/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-25
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-acid concentrations. In contrast, mTORC1 inhibition does not occur in RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efeyan, Alejo -- Zoncu, Roberto -- Chang, Steven -- Gumper, Iwona -- Snitkin, Harriet -- Wolfson, Rachel L -- Kirak, Oktay -- Sabatini, David D -- Sabatini, David M -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23263183" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Animals, Newborn/metabolism/*physiology ; Autophagy/*genetics ; Blood Glucose/metabolism ; GTP Phosphohydrolases/genetics/*metabolism ; *Gene Expression Regulation, Enzymologic ; Gene Knock-In Techniques ; Hypoglycemia/genetics ; Kaplan-Meier Estimate ; Mice ; Multiprotein Complexes/*genetics/*metabolism ; TOR Serine-Threonine Kinases/*genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-05
    Description: The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H(+)-adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid-sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoncu, Roberto -- Bar-Peled, Liron -- Efeyan, Alejo -- Wang, Shuyu -- Sancak, Yasemin -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-07/CA/NCI NIH HHS/ -- R01 CA103866-08/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- R37 AI047389-11/AI/NIAID NIH HHS/ -- R37 AI047389-12/AI/NIAID NIH HHS/ -- R37 AI047389-13/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):678-83. doi: 10.1126/science.1207056.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; Cell Line ; Drosophila ; GTP Phosphohydrolases/metabolism ; Humans ; Lysosomes/*metabolism ; Multiprotein Complexes ; Proteins/*metabolism ; RNA Interference ; Signal Transduction ; TOR Serine-Threonine Kinases ; Vacuolar Proton-Translocating ATPases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-09
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Shuyu -- Tsun, Zhi-Yang -- Wolfson, Rachel L -- Shen, Kuang -- Wyant, Gregory A -- Plovanich, Molly E -- Yuan, Elizabeth D -- Jones, Tony D -- Chantranupong, Lynne -- Comb, William -- Wang, Tim -- Bar-Peled, Liron -- Zoncu, Roberto -- Straub, Christoph -- Kim, Choah -- Park, Jiwon -- Sabatini, Bernardo L -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA180754/CA/NCI NIH HHS/ -- F31 AG044064/AG/NIA NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567906" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/chemistry/genetics/*metabolism ; Arginine/deficiency/*metabolism ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/*metabolism ; Protein Structure, Tertiary ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-05
    Description: In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor alpha to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Douglas B -- Zoncu, Roberto -- Root, David E -- Sabatini, David M -- Sawyers, Charles L -- 1DP2CA195761-01/CA/NCI NIH HHS/ -- AI47389/AI/NIAID NIH HHS/ -- CA092629/CA/NCI NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA155169/CA/NCI NIH HHS/ -- GM07739/GM/NIGMS NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA155169/CA/NCI NIH HHS/ -- R01 CA193837/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):211-7. doi: 10.1126/science.aaa4903. Epub 2015 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26338797" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line, Tumor ; Gene Deletion ; Humans ; Immunoprecipitation ; Lysosomal-Associated Membrane Protein 2/metabolism ; Multiprotein Complexes/metabolism ; Mutation ; Neoplasms/genetics/*metabolism/pathology ; Oncogene Proteins/genetics/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation/genetics ; Protein Transport ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; RNA, Small Interfering/genetics ; Receptor, Platelet-Derived Growth Factor alpha/metabolism ; TOR Serine-Threonine Kinases/metabolism ; rab GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-04
    Description: By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katajisto, Pekka -- Dohla, Julia -- Chaffer, Christine L -- Pentinmikko, Nalle -- Marjanovic, Nemanja -- Iqbal, Sharif -- Zoncu, Roberto -- Chen, Walter -- Weinberg, Robert A -- Sabatini, David M -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):340-3. doi: 10.1126/science.1260384. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu. ; Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Broad Institute, Cambridge, MA 02142, USA. The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging/genetics/*physiology ; Cell Division/genetics/*physiology ; Cell Line ; Humans ; Mitochondria/*physiology/ultrastructure ; Stem Cells/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...