Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: This volume contains a collection of papers from the research program Protective Artificial Respiration (PAR). In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experimental and numerical investigations to improve the fundamental knowledge on respiration and to develop a more individual artificial breathing concept.
    Type of Publication: Book chapter
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: MODEL ; PROSTATE ; IMAGES ; TRIALS ; REGISTRATION ; HEAD ; GUIDANCE ; navigation ; REAL ; TRANSRECTAL ULTRASOUND GUIDANCE
    Abstract: PURPOSE: We present an augmented reality (AR) navigation system that conveys virtual organ models generated from transrectal ultrasonography (TRUS) onto a real laparoscopic video during radical prostatectomy. By providing this additional information about the actual anatomy, we can support surgeons in their working decisions. This work reports the system's first in-vivo application. MATERIALS AND METHODS: The system uses custom-developed needles with colored heads that are inserted into the prostate as soon as the organ surface is uncovered. These navigation aids are once segmented in three-dimensional (3D) TRUS data that is acquired right after the placement of the needles and then continuously tracked in the laparoscopic video images by the surgical navigation system. The navigation system traces the navigation aids in real time and computes a registration between TRUS image and laparoscopic video based on the two-dimensional-three dimensional (2D-3D) point correspondences. With this registration, the system correctly superimposes TRUS-based 3D information on an additional AR monitor placed next to the normal laparoscopic screen. Surgical navigation guidance took place until the prostate was removed from the rectal wall. Finally, the navigation aids were removed together with the specimen inside the specimen bag. RESULTS: The initial human in-vivo application of the surgical navigation system was successful. No complications occurred, the prostate was removed together with the navigation aids, and the system supported the surgeons as intended with an AR visualization in real time. In case of tissue deformations, changes in the spatial configuration of the navigation aids are detected, which preserves the system from erroneous navigation visualization. CONCLUSIONS: Feasibility of the navigation system was shown in the first in-vivo application. TRUS information could be superimposed via AR in real time. To show the benefit for the patient, results obtained from a larger number of trials are needed.
    Type of Publication: Journal article published
    PubMed ID: 21970336
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: IMAGES ; SYSTEM ; REGISTRATION ; POSE ESTIMATION
    Abstract: PURPOSE : Percutaneous nephrolithotomy (PCNL) plays an integral role in treatment of renal stones. Creating percutaneous renal access is the most important and challenging step in the procedure. To facilitate this step, we evaluated our novel mobile augmented reality (AR) system for its feasibility of use for PCNL. METHODS : A tablet computer, such as an iPad[Formula: see text], is positioned above the patient with its camera pointing toward the field of intervention. The images of the tablet camera are registered with the CT image by means of fiducial markers. Structures of interest can be superimposed semi-transparently on the video images. We present a systematic evaluation by means of a phantom study. An urological trainee and two experts conducted 53 punctures on kidney phantoms. RESULTS : The trainee performed best with the proposed AR system in terms of puncturing time (mean: 99 s), whereas the experts performed best with fluoroscopy (mean: 59 s). iPad assistance lowered radiation exposure by a factor of 3 for the inexperienced physician and by a factor of 1.8 for the experts in comparison with fluoroscopy usage. We achieve a mean visualization accuracy of 2.5 mm. CONCLUSIONS : The proposed tablet computer-based AR system has proven helpful in assisting percutaneous interventions such as PCNL and shows benefits compared to other state-of-the-art assistance systems. A drawback of the system in its current state is the lack of depth information. Despite that, the simple integration into the clinical workflow highlights the potential impact of this approach to such interventions.
    Type of Publication: Journal article published
    PubMed ID: 23526436
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...