Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CANCER ; GROWTH ; TUMORS ; NERVOUS-SYSTEM ; ADULT ; MOUSE MODELS ; PEDIATRIC MEDULLOBLASTOMA ; HEDGEHOG PATHWAY INHIBITOR ; TERT PROMOTER MUTATIONS ; ITRACONAZOLE
    Abstract: Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children 〉3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.
    Type of Publication: Journal article published
    PubMed ID: 24651015
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: GENE ; NF-KAPPA-B ; MUTATIONS ; CENTRAL-NERVOUS-SYSTEM ; medulloblastoma ; SUBGROUPS ; GLIOBLASTOMA ; CHILDHOOD EPENDYMOMAS ; PEDIATRIC INTRACRANIAL EPENDYMOMAS ; POSTERIOR-FOSSA EPENDYMOMAS
    Abstract: Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.
    Type of Publication: Journal article published
    PubMed ID: 25965575
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (〈5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (〈12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.
    Type of Publication: Journal article published
    PubMed ID: 26760213
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Abstract: Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.
    Type of Publication: Journal article published
    PubMed ID: 28394352
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: PROTEIN ; CHILDHOOD ; HUMAN CANCERS ; MYC ; HEDGEHOG PATHWAY INHIBITOR ; ALPHA-SYNUCLEIN ; PARKINSONS-DISEASE ; COPY-NUMBER ALTERATION ; BETA FAMILY ; SYNPHILIN-1
    Abstract: Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4alpha. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-beta signalling in Group 3, and NF-kappaB signalling in Group 4, suggest future avenues for rational, targeted therapy.
    Type of Publication: Journal article published
    PubMed ID: 22832581
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-02
    Description: SRMS ( S rc-related kinase lacking C-terminal r egulatory tyrosine and N-terminal m yristoylation s ites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.
    Print ISSN: 1535-9476
    Electronic ISSN: 1535-9484
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-14
    Description: The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (〈5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (〈12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrissy, A Sorana -- Garzia, Livia -- Shih, David J H -- Zuyderduyn, Scott -- Huang, Xi -- Skowron, Patryk -- Remke, Marc -- Cavalli, Florence M G -- Ramaswamy, Vijay -- Lindsay, Patricia E -- Jelveh, Salomeh -- Donovan, Laura K -- Wang, Xin -- Luu, Betty -- Zayne, Kory -- Li, Yisu -- Mayoh, Chelsea -- Thiessen, Nina -- Mercier, Eloi -- Mungall, Karen L -- Ma, Yusanne -- Tse, Kane -- Zeng, Thomas -- Shumansky, Karey -- Roth, Andrew J L -- Shah, Sohrab -- Farooq, Hamza -- Kijima, Noriyuki -- Holgado, Borja L -- Lee, John J Y -- Matan-Lithwick, Stuart -- Liu, Jessica -- Mack, Stephen C -- Manno, Alex -- Michealraj, K A -- Nor, Carolina -- Peacock, John -- Qin, Lei -- Reimand, Juri -- Rolider, Adi -- Thompson, Yuan Y -- Wu, Xiaochong -- Pugh, Trevor -- Ally, Adrian -- Bilenky, Mikhail -- Butterfield, Yaron S N -- Carlsen, Rebecca -- Cheng, Young -- Chuah, Eric -- Corbett, Richard D -- Dhalla, Noreen -- He, An -- Lee, Darlene -- Li, Haiyan I -- Long, William -- Mayo, Michael -- Plettner, Patrick -- Qian, Jenny Q -- Schein, Jacqueline E -- Tam, Angela -- Wong, Tina -- Birol, Inanc -- Zhao, Yongjun -- Faria, Claudia C -- Pimentel, Jose -- Nunes, Sofia -- Shalaby, Tarek -- Grotzer, Michael -- Pollack, Ian F -- Hamilton, Ronald L -- Li, Xiao-Nan -- Bendel, Anne E -- Fults, Daniel W -- Walter, Andrew W -- Kumabe, Toshihiro -- Tominaga, Teiji -- Collins, V Peter -- Cho, Yoon-Jae -- Hoffman, Caitlin -- Lyden, David -- Wisoff, Jeffrey H -- Garvin, James H Jr -- Stearns, Duncan S -- Massimi, Luca -- Schuller, Ulrich -- Sterba, Jaroslav -- Zitterbart, Karel -- Puget, Stephanie -- Ayrault, Olivier -- Dunn, Sandra E -- Tirapelli, Daniela P C -- Carlotti, Carlos G -- Wheeler, Helen -- Hallahan, Andrew R -- Ingram, Wendy -- MacDonald, Tobey J -- Olson, Jeffrey J -- Van Meir, Erwin G -- Lee, Ji-Yeoun -- Wang, Kyu-Chang -- Kim, Seung-Ki -- Cho, Byung-Kyu -- Pietsch, Torsten -- Fleischhack, Gudrun -- Tippelt, Stephan -- Ra, Young Shin -- Bailey, Simon -- Lindsey, Janet C -- Clifford, Steven C -- Eberhart, Charles G -- Cooper, Michael K -- Packer, Roger J -- Massimino, Maura -- Garre, Maria Luisa -- Bartels, Ute -- Tabori, Uri -- Hawkins, Cynthia E -- Dirks, Peter -- Bouffet, Eric -- Rutka, James T -- Wechsler-Reya, Robert J -- Weiss, William A -- Collier, Lara S -- Dupuy, Adam J -- Korshunov, Andrey -- Jones, David T W -- Kool, Marcel -- Northcott, Paul A -- Pfister, Stefan M -- Largaespada, David A -- Mungall, Andrew J -- Moore, Richard A -- Jabado, Nada -- Bader, Gary D -- Jones, Steven J M -- Malkin, David -- Marra, Marco A -- Taylor, Michael D -- R01 CA163722/CA/NCI NIH HHS/ -- R01 NS096236/NS/NINDS NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R01CA159859/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 21;529(7586):351-7. doi: 10.1038/nature16478. Epub 2016 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental &Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. ; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. ; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 0A4, Canada. ; The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Dusseldorf, M5S 3E1, Germany. ; Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario M5S 3E1, Canada. ; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada. ; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada. ; Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada. ; Center for Stem Cell &Regenerative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA. ; Clinical Genomics Research Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario 44195, Canada. ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada. ; School of Computing Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. ; Division of Neurosurgery, Centro Hospitalar Lisboa Norte, Hospital de Santa Maria, Lisbon 1649-035, Portugal. ; Divison of Pathology, Centro Hospitalar Lisboa Norte, Hospital de Santa Maria, Lisbon 1649-035, Portugal. ; Unidade de Neuro-Oncologia Pediatrica, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisbon 1099-023, Portugal. ; Departments of Oncology and Neuro-Oncology, University Children's Hospital of Zurich, Zurich 8032, Switzerland. ; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA. ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA. ; Brain Tumor Program, Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA. ; Pediatric Hematology-Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota 55404, USA. ; Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah 84132, USA. ; A I duPont Hospital for Children, Wilmington, Delaware 19803, USA. ; Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan. ; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan. ; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK. ; Departments of Neurosurgery, Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA. ; Departments of Pediatrics, Cell &Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Department of Neurosurgery, NYU Langone Medical Center, New York, New York 10016, USA. ; Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Columbia University, New York, New York 10032, USA. ; Department of Pediatrics-Hematology and Oncology, Rainbow Babies &Children's Hospital and Department of Pediatrics-Hematology and Oncology, Case Western Reserve, Cleveland, Ohio 44106, USA. ; Pediatric Neurosurgery, Catholic University Medical School, Rome 00198, Italy. ; Center for Neuropathology, Ludwig-Maximilians-Universitat, Munich 81377, Germany. ; Department of Pediatric Oncology, School of Medicine, Masaryk University, Brno 625 00, Czech Republic. ; AP-HP, Department of Neurosurgery, Necker-Enfants Malades Hospital, Universite Rene Descartes, Paris 75743, France. ; Signaling in Development and Brain Tumors, CNRS UMR 3347 / INSERM U1021, Institut Curie, Paris Cedex 5 91405, France. ; Division of Hematology/Oncology, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3V4, Canada. ; Department of Surgery and Anatomy, Faculty of Medicine of Ribeirao Preto, Universidade de Sao Paulo, Brazil, Rebeirao Preto, Sao Paulo 14049-900, Brazil. ; Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales 2065, Australia. ; Queensland Children's Medical Research Institute, Children's Health Queensland, Brisbane, Queensland 4029, Australia. ; Division of Oncology, Children's Health Queensland, Brisbane, Queensland 4029, Australia. ; UQ Child Health Research Centre, The University of Queensland, Brisbane 4029, Australia. ; Pediatric Neuro-Oncology Program, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia 30307, USA. ; Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA. ; Department of Hematology &Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA. ; Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea. ; Institute for Neuropathology, University of Bonn D-53105, Germany. ; Children's University Hospital of Essen D-45147, Germany. ; Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea. ; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. ; Departments of Pathology, Ophthalmology and Oncology, John Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Neurology, Vanderbilt Medical Center, Nashville, Tennessee 37232-8550, USA. ; Department of Neurology, Children's National Medical Center, Washington DC 20010-2970, USA. ; Fondazione IRCCS Istituto Nazionale Tumori, Milan 20133, Italy. ; U.O. Neurochirurgia, Istituto Giannina Gaslini, Genova 16147, Italy. ; Department of Haematology &Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Division of Pathology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA. ; Departments of Pediatrics, Neurology and Neurosurgery, University of California San Francisco, San Francisco, California 94158, USA. ; School of Pharmacology, University of Wisconsin, Madison, Wisconsin 53715, USA. ; Molecular &Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA. ; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Department of Pediatric Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany. ; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Division of Hematology/Oncology, McGill University, Montreal, Quebec H2W 1S6., Canada. ; McLaughlin Centre and Department of Molecular Genetics, Banting and Best Department of Medical Research and Samuel Lunenfeld Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1L7, Canada. ; Department of Molecular Biology &Biochemistry, Simon Fraser University, Burnaby, British Columbia M5G 1L7, Canada. ; Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26760213" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-27
    Description: Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4alpha. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-beta signalling in Group 3, and NF-kappaB signalling in Group 4, suggest future avenues for rational, targeted therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Northcott, Paul A -- Shih, David J H -- Peacock, John -- Garzia, Livia -- Morrissy, A Sorana -- Zichner, Thomas -- Stutz, Adrian M -- Korshunov, Andrey -- Reimand, Juri -- Schumacher, Steven E -- Beroukhim, Rameen -- Ellison, David W -- Marshall, Christian R -- Lionel, Anath C -- Mack, Stephen -- Dubuc, Adrian -- Yao, Yuan -- Ramaswamy, Vijay -- Luu, Betty -- Rolider, Adi -- Cavalli, Florence M G -- Wang, Xin -- Remke, Marc -- Wu, Xiaochong -- Chiu, Readman Y B -- Chu, Andy -- Chuah, Eric -- Corbett, Richard D -- Hoad, Gemma R -- Jackman, Shaun D -- Li, Yisu -- Lo, Allan -- Mungall, Karen L -- Nip, Ka Ming -- Qian, Jenny Q -- Raymond, Anthony G J -- Thiessen, Nina T -- Varhol, Richard J -- Birol, Inanc -- Moore, Richard A -- Mungall, Andrew J -- Holt, Robert -- Kawauchi, Daisuke -- Roussel, Martine F -- Kool, Marcel -- Jones, David T W -- Witt, Hendrick -- Fernandez-L, Africa -- Kenney, Anna M -- Wechsler-Reya, Robert J -- Dirks, Peter -- Aviv, Tzvi -- Grajkowska, Wieslawa A -- Perek-Polnik, Marta -- Haberler, Christine C -- Delattre, Olivier -- Reynaud, Stephanie S -- Doz, Francois F -- Pernet-Fattet, Sarah S -- Cho, Byung-Kyu -- Kim, Seung-Ki -- Wang, Kyu-Chang -- Scheurlen, Wolfram -- Eberhart, Charles G -- Fevre-Montange, Michelle -- Jouvet, Anne -- Pollack, Ian F -- Fan, Xing -- Muraszko, Karin M -- Gillespie, G Yancey -- Di Rocco, Concezio -- Massimi, Luca -- Michiels, Erna M C -- Kloosterhof, Nanne K -- French, Pim J -- Kros, Johan M -- Olson, James M -- Ellenbogen, Richard G -- Zitterbart, Karel -- Kren, Leos -- Thompson, Reid C -- Cooper, Michael K -- Lach, Boleslaw -- McLendon, Roger E -- Bigner, Darell D -- Fontebasso, Adam -- Albrecht, Steffen -- Jabado, Nada -- Lindsey, Janet C -- Bailey, Simon -- Gupta, Nalin -- Weiss, William A -- Bognar, Laszlo -- Klekner, Almos -- Van Meter, Timothy E -- Kumabe, Toshihiro -- Tominaga, Teiji -- Elbabaa, Samer K -- Leonard, Jeffrey R -- Rubin, Joshua B -- Liau, Linda M -- Van Meir, Erwin G -- Fouladi, Maryam -- Nakamura, Hideo -- Cinalli, Giuseppe -- Garami, Miklos -- Hauser, Peter -- Saad, Ali G -- Iolascon, Achille -- Jung, Shin -- Carlotti, Carlos G -- Vibhakar, Rajeev -- Ra, Young Shin -- Robinson, Shenandoah -- Zollo, Massimo -- Faria, Claudia C -- Chan, Jennifer A -- Levy, Michael L -- Sorensen, Poul H B -- Meyerson, Matthew -- Pomeroy, Scott L -- Cho, Yoon-Jae -- Bader, Gary D -- Tabori, Uri -- Hawkins, Cynthia E -- Bouffet, Eric -- Scherer, Stephen W -- Rutka, James T -- Malkin, David -- Clifford, Steven C -- Jones, Steven J M -- Korbel, Jan O -- Pfister, Stefan M -- Marra, Marco A -- Taylor, Michael D -- AT1-112286/Canadian Institutes of Health Research/Canada -- CA116804/CA/NCI NIH HHS/ -- CA138292/CA/NCI NIH HHS/ -- CA159859/CA/NCI NIH HHS/ -- CA86335/CA/NCI NIH HHS/ -- K08 NS059790/NS/NINDS NIH HHS/ -- P20 CA151129/CA/NCI NIH HHS/ -- P30 CA138292/CA/NCI NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P41 GM103504/GM/NIGMS NIH HHS/ -- R01 CA086335/CA/NCI NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- R01 CA114567/CA/NCI NIH HHS/ -- R01 CA116804/CA/NCI NIH HHS/ -- R01 CA148621/CA/NCI NIH HHS/ -- R01 CA155360/CA/NCI NIH HHS/ -- R01 CA159859/CA/NCI NIH HHS/ -- R01 CA163737/CA/NCI NIH HHS/ -- R01 NS061070/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):49-56. doi: 10.1038/nature11327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22832581" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/genetics ; Cerebellar Neoplasms/*classification/*genetics/metabolism ; Child ; DNA Copy Number Variations/genetics ; Gene Duplication/genetics ; Genes, myc/genetics ; Genome, Human/*genetics ; Genomic Structural Variation/*genetics ; Genomics ; Hedgehog Proteins/metabolism ; Humans ; Medulloblastoma/*classification/*genetics/metabolism ; NF-kappa B/metabolism ; Nerve Tissue Proteins/genetics ; Oncogene Proteins, Fusion/genetics ; Proteins/genetics ; RNA, Long Noncoding ; Signal Transduction ; Transforming Growth Factor beta/metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...