Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: GENE ; TUMOR PROGRESSION ; B-RAF ; ACQUIRED-RESISTANCE ; COLORECTAL-CANCER CELLS ; senescence ; SELF-RENEWAL ; WNT/BETA-CATENIN ; HUMAN COLON ; SERRATED PATHWAY
    Abstract: Colon cancer cells frequently carry mutations that activate the beta-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/beta-catenin signals encourage ISC identity, we asked whether beta-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3beta. Similarly, transgenic expression of stabilized beta-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAFV637E knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/beta-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/beta-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of stem cell identity upon induction of BRAF/MAPK activity may represent a novel fail-safe mechanism protecting intestinal tissue from oncogene activation.Oncogene advance online publication, 11 August 2014; doi:10.1038/onc.2014.247.
    Type of Publication: Journal article published
    PubMed ID: 25109331
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: TUMOR PROGRESSION ; SIGNALING PATHWAY ; COLON-CANCER ; K-RAS ; B-RAF ; ACQUIRED-RESISTANCE ; ISLAND METHYLATOR PHENOTYPE ; INTESTINAL STEM-CELLS ; MOLECULAR-FEATURES ; RAS GENE-MUTATIONS
    Abstract: Colorectal cancer (CRC) is characterized by recurrent mutations deregulating key cell signaling cascades and providing the cancer cells with novel functional traits. Among the most frequent mutations in CRC are gain-of-function missense mutations in KRAS and BRAF. Oncogenic activation of KRAS and BRAF is mutually exclusive and occurs in approximately 40% and 10% of all CRCs, respectively. Here we summarize genetic alterations currently described in the literature and databases, indicating overlapping but also specific co-occurrences with either mutated BRAF or KRAS. We describe common and potentially specific biological functions of KRAS and BRAF oncoproteins in the intestinal epithelial cells and during initiation and progression of CRC. We discuss signal transduction networks, highlighting individual functions of oncogenic KRAS and BRAF in terms of feedback loops and their impact on treatment outcome. Finally, we give an update on current strategies of targeted therapeutic intervention in oncogenic RAS-RAF signaling networks for the treatment of metastatic CRC and outline future directions.
    Type of Publication: Journal article published
    PubMed ID: 26299805
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Here we study the effects of inducible oncogenic K-Ras (G12V) expression on the polarized morphogenesis of colonic epithelial cells. We provide evidence that the autocrine production of heregulins, ligands for the ErbB3 receptor tyrosine kinase, is responsible for the hyperproliferation and aberrant 3D morphogenesis upon oncogenic K-Ras expression. This is in line with results obtained in primary intestinal organoid cultures, in which exogenous heregulin is shown to interfere with normal tissue architecture. Importantly, ErbB3 inhibition and heregulin gene silencing rescued K-RasG12V-induced features of cell transformation. Together with the increased ErbB3 positivity detected in human high-grade primary colorectal cancers, our findings provide support for an autocrine signaling loop engaged by oncogenic K-Ras involving ErbB3 that contributes to the dedifferentiation of the intestinal epithelium during tumor initiation and progression.
    Type of Publication: Journal article published
    PubMed ID: 27447549
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; IN-VIVO ; GENES ; METABOLISM ; CELL-CYCLE ; TUMOR PROGRESSION ; COLORECTAL-CANCER ; REGULATORY ELEMENTS ; DNA-DAMAGE RESPONSE ; RHYTHMS
    Abstract: Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARgamma, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.
    Type of Publication: Journal article published
    PubMed ID: 24875049
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: Colorectal cancer is driven by cooperating oncogenic mutations. In this study, we use organotypic cultures derived from transgenic mice inducibly expressing oncogenic beta-catenin and/or PIK3CAH1047R to follow sequential changes in cancer-related signaling networks, intestinal cell metabolism, and physiology in a three-dimensional environment mimicking tissue architecture. Activation of beta-catenin alone results in the formation of highly clonogenic cells that are nonmotile and prone to undergo apoptosis. In contrast, coexpression of stabilized beta-catenin and PIK3CAH1047R gives rise to intestinal cells that are apoptosis-resistant, proliferative, stem cell-like, and motile. Systematic inhibitor treatments of organoids followed by quantitative phenotyping and phosphoprotein analyses uncover key changes in the signaling network topology of intestinal cells after induction of stabilized beta-catenin and PIK3CAH1047R We find that survival and motility of organoid cells are associated with 4EBP1 and AKT phosphorylation, respectively. Our work defines phenotypes, signaling network states, and vulnerabilities of transgenic intestinal organoids as a novel approach to understanding oncogene activities and guiding the development of targeted therapies.
    Type of Publication: Journal article published
    PubMed ID: 28442534
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...