Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Medicine ; Human Physiology ; Neurosciences ; Neurology ; Rehabilitation ; Biomedicine ; Neurosciences ; Human Physiology ; Neurology ; Rehabilitation Medicine ; Springer eBooks
    Description / Table of Contents: Modulation of motor cortical connections through timed stimulation: animal studies -- Connection between premotor and motor cortices in primates -- Excitability of intracortical circuits in the primary motor cortex -- Effects of cortical stimulation on cortical functional connectivity: Imaging studies -- Accessing cortical connectivity using TMS -- Connections between cortical areas during grasping and modulation by brain stimulation -- Modulation of functional connectivity with transcranial direct current stimulation -- Cortical connections to motor cortex and their modulation in behavioural tasks (e.g. posterior parietal cortex, premotor cortex) -- The functional role of interhemispheric interactions in human motor control -- Functional modulation of primary motor cortex during action selection -- Enhancement of normal cortical functions through brain stimulation -- Movement disorders -- Stroke -- Multiple sclerosis -- Spinal cord injury -- Psychiatric diseases
    Abstract: 〈p〉The study and modulation of cortical connections is a rapidly growing area in neuroscience.℗ This unique book by prominent researchers in the field covers recent advances in this area.℗ The first section of the book describes studies of cortical connections, modulation of cortical connectivity and changes in cortical connections with activities such as motor learning and grasping in primates. ℗ The second section covers the use of non-invasive brain stimulation to study and modulate cortical connectivity in humans.℗ The last section describes changes in brain connectivity in neurological and psychiatric diseases, and potential new treatments that manipulate brain connectivity.℗ This book provides an up-to-date view of the study of cortical connectivity, and covers its role in both fundamental neuroscience and potential clinical applications.〈/p〉
    Pages: VIII, 365 p. 63 illus., 37 illus. in color. : digital.
    ISBN: 9783642327674
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Motor control ; Long loop reflexes ; Transcranial electrical stimulation ; Transcranial magnetic stimulation ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Long-latency electromyographic (EMG) responses can be evoked in the first dorsal interosseous muscle (FDI) by unexpected slips of an object (skin stretch) held between the index and thumb, or by forcible adduction of the metacarpophalangeal joint (muscle stretch). The former type of response is due to stimulation of tactile afferents in the skin of the digits, whereas the latter also activates muscle receptors. Previous studies have provided good evidence that long-latency reflex responses to stretch of distal muscles involve activity in a transcortical reflex pathway. The present experiments examined whether cutaneous reflexes also utilise a transcortical route. Transcranial magnetic or electrical stimuli were given over the motor cortex to evoke EMG activity during the period of the long-latency reflex response. When evoked by muscle stretch the responses to magnetic stimulation were facilitated more than those to electric stimulation. In contrast, facilitation was equal during the long-latency reflex elicited by cutaneous stimulation. Because of the different ways in which electrical and magnetic stimuli are believed to activate the motor cortex, we interpret these results to mean that the long-latency response to skin stretch is not mediated by a transcortical mechanism in the majority of subjects, whereas that following muscle stretch is. However, these are average data. In a few individual subjects, the opposite results were obtained. We suggest that there may be differences between subjects in the transcortical contribution to long-latency reflex responses. The implication is that, under normal circumstances, several pathways may contribute to these responses. If so, the relative roles of the pathways may change during different tasks, and in pathological states lesions in one system may well be accompanied by compensatory changes in other systems.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: When we repetitively lift an object, our grip force is influenced by the mechanical object properties of the preceding lift, irrespective of whether the subsequent lift is performed with the same hand or the hand opposite to the preceding lift. This study investigates if repetitive high-frequency transcranial magnetic stimulation (rTMS) over the dominant primary motor cortex affects this relationship. After completion of 10 lifts of an object using the dominant hand, rTMS was applied over the dominant primary motor cortex for 20 s. On the first lift following rTMS, the peak grip force was significantly higher than on the lift preceding rTMS. Moreover, this measure remained elevated throughout the following set of lifts after rTMS. rTMS did not change the peak lift force generated by more proximal arm muscles. The same effect was observed when the lifts following rTMS over the dominant motor cortex were performed with the ipsilateral hand. These effects were not observed when subjects rested both hands on their lap or when a sham stimulation was applied for the same period of time. These preliminary data suggest that rTMS over the sensorimotor cortex disturbs predictive grip force planning.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: High-frequency electrical stimulation through electrodes implanted in the subthalamic nucleus (STN) has been shown to reduce significantly the cardinal symptoms of Parkinson's disease (PD). Despite the success of this treatment, the mechanisms of action of stimulation are poorly understood. To elucidate further the mechanisms of action of deep brain stimulation and its effects on cortical activity, we recorded electroencephalographic potentials from 61 scalp-surface electrodes during low-frequency (5–10 Hz) bipolar stimulation in 11 patients with advanced PD (14 implanted electrodes were tested). In all electrodes tested, stimulation through at least one of the four contacts produced a medium-latency waveform with an average onset of 14 ± 3 ms and peak at 23 ± 4 ms. This potential typically increased in magnitude across contacts from ventral to dorsal. Within-subject comparisons of median nerve somatosensory evoked potentials demonstrated that the generator of the medium-latency potential was within the primary sensorimotor cortex or lateral premotor cortex ipsilateral to stimulation. The timing and topography of this potential were consistent with indirect activation of the cortex by excitation of pallido-thalamic axons that traverse the dorsal aspect of the STN. The potential evoked by stimulation through the contact used for optimal clinical effect was highly variable across electrodes and frequently different from the medium-latency potential described above, suggesting that the neuronal elements mediating the medium-latency potential were different from those that mediate the clinical effects.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Because no detailed information exists regarding the topographic representation of swallowing musculature on the human cerebral cortex in health or disease, we used transcranial magnetic stimulation to study the cortical topography of human oral, pharyngeal and esophageal musculature in 20 healthy ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 403 (2000), S. 495-496 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Like woodworm spreading through a ship's timbers, most slowly progressive diseases begin long before clinical symptoms appear. Although modern techniques can often detect preclinical changes — and, potentially, can identify how and where a disease begins — there is one main problem. ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, 〈inlineGraphic alt="inline image" href="urn:x-wiley:0953816X:EJN4233:EJN_4233_mu1" location="equation/EJN_4233_mu1.gif"/〉O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (± 1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Recent studies indicate that the cortical effects of transcranial magnetic stimulation (TMS) may not be localized to the site of stimulation, but spread to other distant areas. Using echo-planar imaging with blood-oxygenation-level-dependent (BOLD) contrast at 3 Tesla, we measured MRI signal changes in cortical and subcortical motor regions during high-frequency (3.125 Hz) repetitive TMS (rTMS) of the left sensorimotor cortex (M1/S1) at intensities above and below the active motor threshold in healthy humans. The supra- and subthreshold nature of the TMS pulses was confirmed by simultaneous electromyographic monitoring of a hand muscle. Suprathreshold rTMS activated a network of primary and secondary cortical motor regions including M1/S1, supplementary motor area, dorsal premotor cortex, cingulate motor area, the putamen and thalamus. Subthreshold rTMS elicited no MRI-detectable activity in the stimulated M1/S1, but otherwise led to a similar activation pattern as obtained for suprathreshold stimulation though at reduced intensity. In addition, we observed activations within the auditory system, including the transverse and superior temporal gyrus, inferior colliculus and medial geniculate nucleus. The present findings support the notion that re-afferent feedback from evoked movements represents the dominant input to the motor system via M1 during suprathreshold stimulation. The BOLD MRI changes in motor areas distant from the site of subthreshold stimulation are likely to originate from altered synaptic transmissions due to induced excitability changes in M1/S1. They reflect the capability of rTMS to target both local and remote brain regions as tightly connected constituents of a cortical and subcortical network.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...