Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-01
    Description: The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle "splashing" is responsible for the observed formations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mottola, S -- Arnold, G -- Grothues, H-G -- Jaumann, R -- Michaelis, H -- Neukum, G -- Bibring, J-P -- Schroder, S E -- Hamm, M -- Otto, K A -- Pelivan, I -- Proffe, G -- Scholten, F -- Tirsch, D -- Kreslavsky, M -- Remetean, E -- Souvannavong, F -- Dolives, B -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):aab0232. doi: 10.1126/science.aab0232.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. stefano.mottola@dlr.de. ; German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. ; DLR, Space Management, Space Science. Bonn, Germany. ; German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. Freie Universitat Berlin, Institute of Geological Sciences, Berlin, Germany. ; Freie Universitat Berlin, Institute of Geological Sciences, Berlin, Germany. ; Institute of Space Astrophysics, Orsay, France. ; German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. Humboldt University Berlin, Germany. ; Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA. ; Centre National d'Etudes Spatiales, Toulouse, France. ; Magellium, Ramonville Saint-Agne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228151" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-15
    Description: Multispectral images (0.44 to 0.98 mum) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rheasilvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that chronicle processes--including impact excavation, mass wasting, and space weathering--that shaped the asteroid's surface. Vesta's color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Vishnu -- Nathues, Andreas -- Le Corre, Lucille -- Sierks, Holger -- Li, Jian-Yang -- Gaskell, Robert -- McCoy, Timothy -- Beck, Andrew W -- Schroder, Stefan E -- Pieters, Carle M -- Becker, Kris J -- Buratti, Bonnie J -- Denevi, Brett -- Blewett, David T -- Christensen, Ulrich -- Gaffey, Michael J -- Gutierrez-Marques, Pablo -- Hicks, Michael -- Keller, Horst Uwe -- Maue, Thorsten -- Mottola, Stefano -- McFadden, Lucy A -- McSween, Harry Y -- Mittlefehldt, David -- O'Brien, David P -- Raymond, Carol -- Russell, Christopher -- New York, N.Y. -- Science. 2012 May 11;336(6082):700-4. doi: 10.1126/science.1219088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany. reddy@mps.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582258" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-07
    Description: Localized dark and bright materials, often with extremely different albedos, were recently found on Vesta's surface. The range of albedos is among the largest observed on Solar System rocky bodies. These dark materials, often associated with craters, appear in ejecta and crater walls, and their pyroxene absorption strengths are correlated with material brightness. It was tentatively suggested that the dark material on Vesta could be either exogenic, from carbon-rich, low-velocity impactors, or endogenic, from freshly exposed mafic material or impact melt, created or exposed by impacts. Here we report Vesta spectra and images and use them to derive and interpret the properties of the 'pure' dark and bright materials. We argue that the dark material is mainly from infall of hydrated carbonaceous material (like that found in a major class of meteorites and some comet surfaces), whereas the bright material is the uncontaminated indigenous Vesta basaltic soil. Dark material from low-albedo impactors is diffused over time through the Vestan regolith by impact mixing, creating broader, diffuse darker regions and finally Vesta's background surface material. This is consistent with howardite-eucrite-diogenite meteorites coming from Vesta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCord, T B -- Li, J-Y -- Combe, J-P -- McSween, H Y -- Jaumann, R -- Reddy, V -- Tosi, F -- Williams, D A -- Blewett, D T -- Turrini, D -- Palomba, E -- Pieters, C M -- De Sanctis, M C -- Ammannito, E -- Capria, M T -- Le Corre, L -- Longobardo, A -- Nathues, A -- Mittlefehldt, D W -- Schroder, S E -- Hiesinger, H -- Beck, A W -- Capaccioni, F -- Carsenty, U -- Keller, H U -- Denevi, B W -- Sunshine, J M -- Raymond, C A -- Russell, C T -- England -- Nature. 2012 Nov 1;491(7422):83-6. doi: 10.1038/nature11561.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bear Fight Institute, 22 Fiddler's Road, Box 667, Winthrop, Washington 98862, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23128228" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...