Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-21
    Description: Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paolino, Magdalena -- Choidas, Axel -- Wallner, Stephanie -- Pranjic, Blanka -- Uribesalgo, Iris -- Loeser, Stefanie -- Jamieson, Amanda M -- Langdon, Wallace Y -- Ikeda, Fumiyo -- Fededa, Juan Pablo -- Cronin, Shane J -- Nitsch, Roberto -- Schultz-Fademrecht, Carsten -- Eickhoff, Jan -- Menninger, Sascha -- Unger, Anke -- Torka, Robert -- Gruber, Thomas -- Hinterleitner, Reinhard -- Baier, Gottfried -- Wolf, Dominik -- Ullrich, Axel -- Klebl, Bert M -- Penninger, Josef M -- W 1101/Austrian Science Fund FWF/Austria -- England -- Nature. 2014 Mar 27;507(7493):508-12. doi: 10.1038/nature12998. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria. ; Lead Discovery Center GmbH, D-44227 Dortmund, Germany. ; Medical University Innsbruck, 6020 Innsbruck, Austria. ; Department of Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA. ; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Perth, Australia. ; Max-Planck, Institute for Biochemistry, Department of Molecular Biology, D-82152 Martinsried, Germany. ; 1] Medical University Innsbruck, 6020 Innsbruck, Austria [2] Internal Medicine III, University Hospital Bonn, 53127 Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553136" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/deficiency/genetics/*metabolism ; Animals ; Anticoagulants/pharmacology/therapeutic use ; Female ; Killer Cells, Natural/drug effects/*immunology/metabolism ; Male ; Mammary Neoplasms, Experimental/drug therapy/genetics/immunology/*pathology ; Melanoma, Experimental/drug therapy/genetics/immunology/*pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neoplasm Metastasis/drug therapy/*immunology/prevention & control ; Proto-Oncogene Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-cbl/deficiency/genetics/*metabolism ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors/*metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; Ubiquitination ; Warfarin/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-12
    Description: CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1(K/K) mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674495/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674495/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanada, Toshikatsu -- Weitzer, Stefan -- Mair, Barbara -- Bernreuther, Christian -- Wainger, Brian J -- Ichida, Justin -- Hanada, Reiko -- Orthofer, Michael -- Cronin, Shane J -- Komnenovic, Vukoslav -- Minis, Adi -- Sato, Fuminori -- Mimata, Hiromitsu -- Yoshimura, Akihiko -- Tamir, Ido -- Rainer, Johannes -- Kofler, Reinhard -- Yaron, Avraham -- Eggan, Kevin C -- Woolf, Clifford J -- Glatzel, Markus -- Herbst, Ruth -- Martinez, Javier -- Penninger, Josef M -- K99NS077435-01A1/NS/NINDS NIH HHS/ -- NS038253/NS/NINDS NIH HHS/ -- P 19223/Austrian Science Fund FWF/Austria -- P 21667/Austrian Science Fund FWF/Austria -- R00 NS077435/NS/NINDS NIH HHS/ -- R01 NS038253/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 28;495(7442):474-80. doi: 10.1038/nature11923. Epub 2013 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23474986" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis ; Animals ; Animals, Newborn ; Axons/metabolism/pathology ; Cell Death ; Diaphragm/innervation ; Embryo Loss ; Embryo, Mammalian/metabolism/pathology ; Exons/genetics ; Female ; Fibroblasts ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Motor Neurons/*metabolism/*pathology ; Muscular Atrophy, Spinal ; Neuromuscular Diseases/metabolism/pathology ; Oxidative Stress ; RNA Processing, Post-Transcriptional ; RNA, Transfer, Tyr/genetics/*metabolism ; Respiration ; Spinal Nerves/cytology ; Transcription Factors/deficiency/*metabolism ; Tumor Suppressor Protein p53/metabolism ; Tyrosine/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...