Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-29
    Description: Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Ji-Hyuk -- Wang, Han -- Oh, Soong Ju -- Paik, Taejong -- Sung, Pil -- Sung, Jinwoo -- Ye, Xingchen -- Zhao, Tianshuo -- Diroll, Benjamin T -- Murray, Christopher B -- Kagan, Cherie R -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):205-8. doi: 10.1126/science.aad0371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Complex Assemblies of Soft Matter, CNRS-SOLVAY-PENN UMI 3254, Bristol, PA 19007-3624, USA. Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-Gu, Daejeon, 305-350, Korea. ; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Complex Assemblies of Soft Matter, CNRS-SOLVAY-PENN UMI 3254, Bristol, PA 19007-3624, USA. ; Department of Materials Science and Engineering, Yonsei University, Seoul 120-747, Korea. ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. kagan@seas.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124455" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-16
    Description: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenen, Martien A M -- Archibald, Alan L -- Uenishi, Hirohide -- Tuggle, Christopher K -- Takeuchi, Yasuhiro -- Rothschild, Max F -- Rogel-Gaillard, Claire -- Park, Chankyu -- Milan, Denis -- Megens, Hendrik-Jan -- Li, Shengting -- Larkin, Denis M -- Kim, Heebal -- Frantz, Laurent A F -- Caccamo, Mario -- Ahn, Hyeonju -- Aken, Bronwen L -- Anselmo, Anna -- Anthon, Christian -- Auvil, Loretta -- Badaoui, Bouabid -- Beattie, Craig W -- Bendixen, Christian -- Berman, Daniel -- Blecha, Frank -- Blomberg, Jonas -- Bolund, Lars -- Bosse, Mirte -- Botti, Sara -- Bujie, Zhan -- Bystrom, Megan -- Capitanu, Boris -- Carvalho-Silva, Denise -- Chardon, Patrick -- Chen, Celine -- Cheng, Ryan -- Choi, Sang-Haeng -- Chow, William -- Clark, Richard C -- Clee, Christopher -- Crooijmans, Richard P M A -- Dawson, Harry D -- Dehais, Patrice -- De Sapio, Fioravante -- Dibbits, Bert -- Drou, Nizar -- Du, Zhi-Qiang -- Eversole, Kellye -- Fadista, Joao -- Fairley, Susan -- Faraut, Thomas -- Faulkner, Geoffrey J -- Fowler, Katie E -- Fredholm, Merete -- Fritz, Eric -- Gilbert, James G R -- Giuffra, Elisabetta -- Gorodkin, Jan -- Griffin, Darren K -- Harrow, Jennifer L -- Hayward, Alexander -- Howe, Kerstin -- Hu, Zhi-Liang -- Humphray, Sean J -- Hunt, Toby -- Hornshoj, Henrik -- Jeon, Jin-Tae -- Jern, Patric -- Jones, Matthew -- Jurka, Jerzy -- Kanamori, Hiroyuki -- Kapetanovic, Ronan -- Kim, Jaebum -- Kim, Jae-Hwan -- Kim, Kyu-Won -- Kim, Tae-Hun -- Larson, Greger -- Lee, Kyooyeol -- Lee, Kyung-Tai -- Leggett, Richard -- Lewin, Harris A -- Li, Yingrui -- Liu, Wansheng -- Loveland, Jane E -- Lu, Yao -- Lunney, Joan K -- Ma, Jian -- Madsen, Ole -- Mann, Katherine -- Matthews, Lucy -- McLaren, Stuart -- Morozumi, Takeya -- Murtaugh, Michael P -- Narayan, Jitendra -- Nguyen, Dinh Truong -- Ni, Peixiang -- Oh, Song-Jung -- Onteru, Suneel -- Panitz, Frank -- Park, Eung-Woo -- Park, Hong-Seog -- Pascal, Geraldine -- Paudel, Yogesh -- Perez-Enciso, Miguel -- Ramirez-Gonzalez, Ricardo -- Reecy, James M -- Rodriguez-Zas, Sandra -- Rohrer, Gary A -- Rund, Lauretta -- Sang, Yongming -- Schachtschneider, Kyle -- Schraiber, Joshua G -- Schwartz, John -- Scobie, Linda -- Scott, Carol -- Searle, Stephen -- Servin, Bertrand -- Southey, Bruce R -- Sperber, Goran -- Stadler, Peter -- Sweedler, Jonathan V -- Tafer, Hakim -- Thomsen, Bo -- Wali, Rashmi -- Wang, Jian -- Wang, Jun -- White, Simon -- Xu, Xun -- Yerle, Martine -- Zhang, Guojie -- Zhang, Jianguo -- Zhang, Jie -- Zhao, Shuhong -- Rogers, Jane -- Churcher, Carol -- Schook, Lawrence B -- 095908/Wellcome Trust/United Kingdom -- 249894/European Research Council/International -- 5 P41 LM006252/LM/NLM NIH HHS/ -- 5 P41LM006252/LM/NLM NIH HHS/ -- BB/E010520/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010520/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010768/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E011640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G004013/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H005935/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- P20-RR017686/RR/NCRR NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R13 RR020283A/RR/NCRR NIH HHS/ -- R13 RR032267A/RR/NCRR NIH HHS/ -- R21 DA027548/DA/NIDA NIH HHS/ -- R21 HG006464/HG/NHGRI NIH HHS/ -- T32 AI083196/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):393-8. doi: 10.1038/nature11622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands. martien.groenen@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Magnetism and Magnetic Materials 63-64 (1987), S. 515-517 
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0368-2048
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters A 81 (1981), S. 483-487 
    ISSN: 0375-9601
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica B: Physics of Condensed Matter 186-188 (1993), S. 26-30 
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Platelet-derived growth factor (PDGF) has a targeted activity on mesenchymal cells, but the in vivo effects of PDGF are not well understood. We have applied about 3 μg of PDGF-A and PDGF-B on the differentiated chorioallantoic membrane (CAM) of 13-day-old chick embryos. After 1–3 days, specimens were evaluated macroscopically, histologically with semi- and ultrathin sections, and immunohistologically with antibodies against smooth muscle α-actin (αSMA), desmin, and fibronectin (FN). Proliferation studies were performed according to the 5-bromo-2-deoxyuridine (BrdU)/anti-BrdU method. We did not observe effects of PDGF-A. PDGF-B induced proliferation of fibrocytes and their transformation into myofibroblasts. Bundles of spindle-shaped myofibroblasts accumulated beneath the chorionic epithelium. These cells were strongly positive for αSMA and FN, but negative for desmin. They possessed a well developed rough endoplasmic reticulum and bundles of microfilaments anchoring in the cell membrane. Our results suggest that PDGF-B is a ”transforming” growth factor with important functions during formation of granulation tissue which are closely comparable to the effects of the PDGF-B-like protein of simian sarcoma virus. PDGF-B also induced vascular alterations in the CAM, which, however, appeared to be a secondary effect. While the intra-chorionic capillaries were lost, an accumulation of small vessels positive for αSMA was observed. This indicates a function for PDGF-B during segregation of main vessels from a primary vascular plexus.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1106
    Keywords: Key words Nitric oxide synthase ; GABA ; Retina ; Rabbit ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In rabbit and rat retinae, wholemounted preparations and 40 μm thick vibratome sections were processed for nitric oxide synthase (NOS) immunoreactivity and consecutive semithin sections were immunostained with anti-NOS and anti-GABA antisera, respectively. Two types of NOS-labelled amacrine cells were identified: type 1 cells with larger somata were intensely stained, and type 2 cells with smaller somata were weakly stained. A few displaced amacrine cells also showed NOS-like immunoreactivity. All these NOS-like immunoreactive neurons also expressed GABA-like immunoreactivity. Thus, nitric-oxide-containing neurons might constitute a subpopulation of GABAergic neurons in rabbit and rat retinae.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...