Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Publication Date: 2011-04-30
    Description: Grid cells in parahippocampal cortices fire at vertices of a periodic triangular grid that spans the entire recording environment. Such precise neural computations in space have been proposed to emerge from equally precise temporal oscillations within cells or within the local neural circuitry. We found that grid-like firing patterns in the entorhinal cortex vanished when theta oscillations were reduced after intraseptal lidocaine infusions in rats. Other spatially modulated cells in the same cortical region and place cells in the hippocampus retained their spatial firing patterns to a larger extent during these periods without well-organized oscillatory neuronal activity. Precisely timed neural activity within single cells or local networks is thus required for periodic spatial firing but not for single place fields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koenig, Julie -- Linder, Ashley N -- Leutgeb, Jill K -- Leutgeb, Stefan -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):592-5. doi: 10.1126/science.1201685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Entorhinal Cortex/cytology/*physiology ; Hippocampus/cytology/*physiology ; Lidocaine/pharmacology ; Male ; Membrane Potentials ; Motor Activity ; Nerve Net/physiology ; Neural Pathways ; Neurons/*physiology ; Periodicity ; Rats ; Rats, Long-Evans ; Septum Pellucidum/drug effects/physiology ; *Space Perception ; *Theta Rhythm/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-27
    Description: Neurotransmitters have been thought to be fixed throughout life, but whether sensory stimuli alter behaviorally relevant transmitter expression in the mature brain is unknown. We found that populations of interneurons in the adult rat hypothalamus switched between dopamine and somatostatin expression in response to exposure to short- and long-day photoperiods. Changes in postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin receptor expression remained constant. Pharmacological blockade or ablation of these dopaminergic neurons led to anxious and depressed behavior, phenocopying performance after exposure to the long-day photoperiod. Induction of newly dopaminergic neurons through exposure to the short-day photoperiod rescued the behavioral consequences of lesions. Natural stimulation of other sensory modalities may cause changes in transmitter expression that regulate different behaviors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dulcis, Davide -- Jamshidi, Pouya -- Leutgeb, Stefan -- Spitzer, Nicholas C -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):449-53. doi: 10.1126/science.1234152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California-San Diego, La Jolla, CA 92093-0357, USA. ddulcis@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Brain/metabolism/*physiology ; Cell Count ; Dopamine/*metabolism ; Dopaminergic Neurons/metabolism/*physiology ; Hypothalamus/metabolism/physiology ; Male ; Maze Learning ; *Photoperiod ; Rats ; Rats, Long-Evans ; Receptors, Dopamine/metabolism ; Receptors, Somatostatin/metabolism ; Seasons ; Somatostatin/*metabolism ; Stress, Psychological/*psychology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: The high storage capacity of the episodic memory system relies on distinct representations for events that are separated in time and space. The spatial component of these computations includes the formation of independent maps by hippocampal place cells across environments, referred to as global remapping. Such remapping is thought to emerge by the switching of input patterns from specialized spatially selective cells in medial entorhinal cortex (mEC), such as grid and border cells. Although it has been shown that acute manipulations of mEC firing patterns are sufficient for inducing hippocampal remapping, it remains unknown whether specialized spatial mEC inputs are necessary for the reorganization of hippocampal spatial representations. Here, we examined remapping in rats without mEC input to the hippocampus and found that highly distinct spatial maps emerged rapidly in every individual rat. Our data suggest that hippocampal spatial computations do not depend on inputs from specialized cell types in mEC.
    Type of Publication: Journal article published
    PubMed ID: 29562172
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...