Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-09
    Description: Objective Compare arthroscopic partial meniscectomy to a true sham intervention. Methods Sham-controlled superiority trial performed in three county hospitals in Denmark comparing arthroscopic partial meniscectomy to skin incisions only in patients aged 35–55 years with persistent knee pain and an MRI-confirmed medial meniscus lesion. A computer-generated table of random numbers generated two comparison groups. Participants and outcome assessors were blinded to group allocation. Exclusions were locking knees, high-energy trauma or severe osteoarthritis. Outcomes were collected at baseline, 3 and 24 months. We hypothesised no difference between groups. The primary outcome was the between-group difference in change from baseline to 2 years in the mean score across all five normalised Knee injury and Osteoarthritis Outcome Score (KOOS) subscales (KOOS 5 ). Results Forty-four patients (of the estimated 72) underwent randomisation; 22 in each group. Sixteen participants (36%) were non-blinded and eight participants (36%) from the sham group crossed over to the surgery group prior to the 2-year follow-up. At 2 years, both groups reported clinically relevant improvements (surgery 21.8, skin incisions only 13.6), the mean difference between groups was 8.2 in favour of surgery, which is slightly less than the cut-off of 10 prespecified to represent a clinically relevant difference; judged by the 95% CI (–3.4 to 19.8), a possibility of clinically relevant difference could not be excluded. In total, nine participants experienced 11 adverse events; six in the surgery group and three in the skin-incisions-only group. Conclusion We found greater improvement from arthroscopic partial meniscectomy compared with skin incisions only at 2 years, with the statistical uncertainty of the between-group difference including what could be considered clinically relevant. Because of the study being underpowered, nearly half in the sham group being non-blinded and one-third crossing over to surgery, the results cannot be generalised to the greater patient population. Trial registration number NCT01264991 .
    Keywords: Open access, Surgery
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-06
    Description: Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iversen, Lars -- Tu, Hsiung-Lin -- Lin, Wan-Chen -- Christensen, Sune M -- Abel, Steven M -- Iwig, Jeff -- Wu, Hung-Jen -- Gureasko, Jodi -- Rhodes, Christopher -- Petit, Rebecca S -- Hansen, Scott D -- Thill, Peter -- Yu, Cheng-Han -- Stamou, Dimitrios -- Chakraborty, Arup K -- Kuriyan, John -- Groves, Jay T -- P01 AI091580/AI/NIAID NIH HHS/ -- R01 AI104789/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):50-4. doi: 10.1126/science.1250373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry, MIT, Cambridge, MA 02139, USA. ; Mechanobiology Institute, National University of Singapore, Singapore. ; Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02139, USA. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, MIT, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Mechanobiology Institute, National University of Singapore, Singapore. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Berkeley Education Alliance for Research in Singapore, 1 Create Way, CREATE tower level 11, University Town, Singapore 138602. jtgroves@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994643" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Kinetics ; Nucleotides/chemistry ; *Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins p21(ras)/*agonists ; Son of Sevenless Protein, Drosophila/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-26
    Description: In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veshaguri, Salome -- Christensen, Sune M -- Kemmer, Gerdi C -- Ghale, Garima -- Moller, Mads P -- Lohr, Christina -- Christensen, Andreas L -- Justesen, Bo H -- Jorgensen, Ida L -- Schiller, Jurgen -- Hatzakis, Nikos S -- Grabe, Michael -- Pomorski, Thomas Gunther -- Stamou, Dimitrios -- R21-GM100224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1469-73. doi: 10.1126/science.aad6429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark. ; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark. ; Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany. ; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013734" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Arabidopsis Proteins/antagonists & inhibitors/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Ion Transport ; Membrane Potentials/drug effects/physiology ; Molecular Imaging ; Protein Structure, Tertiary ; Proton-Translocating ATPases/antagonists & inhibitors/chemistry/*metabolism ; *Protons ; Valinomycin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Pyridoxylated adult human hemoglobin (HbAo) was prepared using a one molar equivalent of pyridoxal 5-phosphate (PLP) per heme and reduced with either NaCNBH3 or NaBH4. A separate sample was pyridoxylated and passed through a mixed-bed ion exchange column without reduction. All three preparations had a P50 of 29 ± 2 torr and a cooperativity of n = 2.4 ± 0.1. These preparations, in both the oxy and deoxy forms, were then treated with 7 equivalents of glutaraldehyde per tetramer at pH 6.8 at 4°C and at room temperature. The polymerization invariably reduced the P50 to 18 ± 2 torr with Hill coefficients of less than 2. These solutions, with or without further reduction using NaCNBH3, all retained the PLP in differing amounts (2-3 moles/tetramer). Methemoglobin concentrations were increased during the polymerization reaction. The normal pyridoxylation procedure, using sodium borohydride reduction, resulted in a number of different molecular species. Polymerization with glutaraldehyde caused a further proliferation of molecular species that could not be separated by anion exchange chromatography or by isoelectric focusing. The extent of polymerization, estimated by gel exclusion chromatography and SDS polyacrylamide gel electrophoresis, was from 40 to 50%. Analysis of the reverse phase chromatograms, which separate the heme and the α- and β-chains, showed extensive polymerization and distribution of the radioactively labeled PLP on the protein for all preparations. All of the polymerized and pyridoxylated samples were unstable, and showed different chromatographic patterns after storage at 4°C for 1 month. Attempts to stabilize these preparations by further reduction with NaCNBH3 gave products with a lower P50 and lower cooperativity. When the reactions were conducted with a purified HbAo, heterogeneity was somewhat decreased compared to the normally used stroma-free hemoglobin, but a large number of molecular species were still formed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...