Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Publication Date: 2018-10-02
    Description: Purpose: Desmoplastic small round cell tumor (DSRCT), which harbors EWSR1-WT1 t(11;22)(p13:q12) chromosomal translocation, is an aggressive malignancy that typically presents as intra-abdominal sarcomatosis in young males. Given its rarity, optimal treatment has not been defined. Experimental Design: We conducted a retrospective study of 187 patients with DSRCT treated at MD Anderson Cancer Center over 2 decades. Univariate and multivariate regression analyses were performed. We determined whether chemotherapy, complete cytoreductive surgery (CCS), hyperthermic intraperitoneal cisplatin (HIPEC), and/or whole abdominal radiation (WART) improve overall survival (OS) in patients with DSRCT. Critically, because our institutional practice limits HIPEC and WART to patients with less extensive, potentially resectable disease that had benefited from neoadjuvant chemotherapy, a time-variant analysis was performed to evaluate those adjunct treatment modalities. Results: The pre-2003 5-year OS rate of 5% has substantially improved to 25% with the advent of newer chemotherapies and better surgical and radiotherapy techniques (HR, 0.47; 95% CI, 0.29–0.75). Chemotherapy response (log rank P = 0.004) and CCS (log rank P 〈 0.0001) were associated with improved survival. Although WART and HIPEC lacked statistical significance, our study was not powered to detect their potential impact upon OS. Conclusions: Improved 3- and 5-year OS were observed following multidisciplinary treatment that includes Ewing sarcoma (ES)-based chemotherapy and complete tumor cytoreductive surgery, but few if any patients are cured. Prospective randomized studies will be required to prove whether HIPEC or WART are important. In the meantime, chemotherapy and CCS remain the cornerstone of treatment and provide a solid foundation to evaluate new biologically targeted therapies. Clin Cancer Res; 24(19); 4865–73. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: DISEASE ; DISEASES ; GENE ; GENES ; PROTEIN ; PROTEINS ; RNA ; DNA ; recombination ; tumour ; BIOLOGY ; SEQUENCE ; chromosome ; NUMBER ; MUTATION ; inactivation ; REGION ; MUTATIONS ; EVOLUTION ; DEGRADATION ; CHROMOSOMES ; GENE FAMILY ; AID ; HUMAN GENOME SEQUENCE ; INACTIVATION CENTER ; LINKED MENTAL-RETARDATION ; MAMMALIAN Y-CHROMOSOME ; REPEAT HYPOTHESIS
    Abstract: The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence
    Type of Publication: Journal article published
    PubMed ID: 15772651
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Keywords: RISK ; MICE ; SUSCEPTIBILITY ; chemotherapy ; GEMCITABINE ; DUCTAL ADENOCARCINOMA ; GENE POLYMORPHISMS ; LUNG-CANCER PATIENTS ; MYOTUBULARIN-RELATED PROTEIN-2 ; SBF2
    Abstract: Background and objective Survival of patients with pancreatic adenocarcinoma is limited and few prognostic factors are known. We conducted a two-stage genome-wide association study (GWAS) to identify germline variants associated with survival in patients with pancreatic adenocarcinoma. Methods We analysed overall survival in relation to single nucleotide polymorphisms (SNPs) among 1005 patients from two large GWAS datasets, PanScan I and ChinaPC. Cox proportional hazards regression was used in an additive genetic model with adjustment for age, sex, clinical stage and the top four principal components of population stratification. The first stage included 642 cases of European ancestry (PanScan), from which the top SNPs (p10(-5)) were advanced to a joint analysis with 363 additional patients from China (ChinaPC). Results In the first stage of cases of European descent, the top-ranked loci were at chromosomes 11p15.4, 18p11.21 and 1p36.13, tagged by rs12362504 (p=1.63x10(-7)), rs981621 (p=1.65x10(-7)) and rs16861827 (p=3.75x10(-7)), respectively. 131 SNPs with p10(-5) were advanced to a joint analysis with cases from the ChinaPC study. In the joint analysis, the top-ranked SNP was rs10500715 (minor allele frequency, 0.37; p=1.72x10(-7)) on chromosome 11p15.4, which is intronic to the SET binding factor 2 (SBF2) gene. The HR (95% CI) for death was 0.74 (0.66 to 0.84) in PanScan I, 0.79 (0.65 to 0.97) in ChinaPC and 0.76 (0.68 to 0.84) in the joint analysis. Conclusions Germline genetic variation in the SBF2 locus was associated with overall survival in patients with pancreatic adenocarcinoma of European and Asian ancestry. This association should be investigated in additional large patient cohorts.
    Type of Publication: Journal article published
    PubMed ID: 23180869
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1600-0714
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background:  Altered glycosylation of glycoconjugates is among the important molecular changes that accompany malignant transformation. The purpose of our study was to investigate clinical usefulness of circulatory levels of total and lipid bound sialic acid for early diagnosis and management of oral cavity cancer patients.Methods:  Blood samples were collected from 41 untreated oral cancer patients, 20 patients with oral pre-cancerous conditions (OPC) and 20 healthy subjects. Serum sialic acid (total and lipid bound) levels were measured spectrophotometrically.Results:  Serum levels of total and lipid bound sialic acid were significantly elevated (P 〈 0.001) in untreated oral cancer patients as compared to healthy individuals as well as patients with OPC. Multivariate analysis documented that the progressive rise in total and lipid bound sialic acid was significantly associated (P = 0.0001 and 0.039, respectively) with stage of malignant disease.Conclusion:  The data revealed significant elevations in sialic acid levels in oral cancer patients and suggested potential utility of these parameters in diagnosis as well as determining clinical stage of the malignant disease.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-18
    Description: The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610745/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ouyang, Hong -- Xue, Yuanchao -- Lin, Ying -- Zhang, Xiaohui -- Xi, Lei -- Patel, Sherrina -- Cai, Huimin -- Luo, Jing -- Zhang, Meixia -- Zhang, Ming -- Yang, Yang -- Li, Gen -- Li, Hairi -- Jiang, Wei -- Yeh, Emily -- Lin, Jonathan -- Pei, Michelle -- Zhu, Jin -- Cao, Guiqun -- Zhang, Liangfang -- Yu, Benjamin -- Chen, Shaochen -- Fu, Xiang-Dong -- Liu, Yizhi -- Zhang, Kang -- GM049369/GM/NIGMS NIH HHS/ -- R01 EY020846/EY/NEI NIH HHS/ -- R01 EY021374/EY/NEI NIH HHS/ -- England -- Nature. 2014 Jul 17;511(7509):358-61. doi: 10.1038/nature13465. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing 100730, China (X.Z.); Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, China (Y.Y.). ; Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology, and Biomaterial and Tissue Engineering Center of Institute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [3] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China [4] Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Corneal Diseases/*metabolism/*pathology ; Disease Models, Animal ; Epithelium, Corneal/*cytology/*metabolism/pathology ; Eye Proteins/genetics/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; *Homeostasis ; Humans ; Limbus Corneae/cytology/metabolism ; Male ; Paired Box Transcription Factors/genetics/*metabolism ; Rabbits ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Skin/cytology/metabolism/pathology ; Stem Cell Transplantation ; Stem Cells/cytology/metabolism ; Transcription Factors/metabolism ; Tumor Suppressor Proteins/metabolism ; Wnt Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, Sachin -- Cone, Roger D -- England -- Nature. 2015 Mar 5;519(7541):38-40. doi: 10.1038/nature14206. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232-0615, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707800" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cannabinoids/*pharmacology ; Eating/*drug effects/*physiology ; Hypothalamus/*cytology ; Male ; Neurons/*drug effects/*metabolism ; Pro-Opiomelanocortin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-10
    Description: The repair and regeneration of tissues using endogenous stem cells represents an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure poses notable risks of complications. Here we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method of cataract removal that preserves endogenous LECs and achieves functional lens regeneration in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from current practice, as it preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Haotian -- Ouyang, Hong -- Zhu, Jie -- Huang, Shan -- Liu, Zhenzhen -- Chen, Shuyi -- Cao, Guiqun -- Li, Gen -- Signer, Robert A J -- Xu, Yanxin -- Chung, Christopher -- Zhang, Ying -- Lin, Danni -- Patel, Sherrina -- Wu, Frances -- Cai, Huimin -- Hou, Jiayi -- Wen, Cindy -- Jafari, Maryam -- Liu, Xialin -- Luo, Lixia -- Zhu, Jin -- Qiu, Austin -- Hou, Rui -- Chen, Baoxin -- Chen, Jiangna -- Granet, David -- Heichel, Christopher -- Shang, Fu -- Li, Xuri -- Krawczyk, Michal -- Skowronska-Krawczyk, Dorota -- Wang, Yujuan -- Shi, William -- Chen, Daniel -- Zhong, Zheng -- Zhong, Sheng -- Zhang, Liangfang -- Chen, Shaochen -- Morrison, Sean J -- Maas, Richard L -- Zhang, Kang -- Liu, Yizhi -- R37 AG024945/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):323-8. doi: 10.1038/nature17181. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Howard Hughes Medical Institute, Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Clinical and Translational Research Institute, University of California, San Diego, La Jolla, California 92093, USA. ; Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cataract/congenital/pathology/physiopathology/*therapy ; Cataract Extraction ; Epithelial Cells/cytology/metabolism ; Eye Proteins/metabolism ; Homeodomain Proteins/metabolism ; Homeostasis ; Humans ; Lens, Crystalline/*cytology/*physiology ; Macaca ; Paired Box Transcription Factors/metabolism ; Polycomb Repressive Complex 1/metabolism ; Proto-Oncogene Proteins/metabolism ; *Recovery of Function ; Regeneration/*physiology ; Repressor Proteins/metabolism ; Stem Cells/*cytology/metabolism ; Vision, Ocular/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-20
    Description: Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Bo -- Johnson, Daniel S -- Patel, Gayatri -- Smith, Benjamin Y -- Pandey, Manjula -- Patel, Smita S -- Wang, Michelle D -- GM059849/GM/NIGMS NIH HHS/ -- GM55310/GM/NIGMS NIH HHS/ -- R01 GM055310/GM/NIGMS NIH HHS/ -- R01 GM055310-17/GM/NIGMS NIH HHS/ -- T32GM008267/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Sep 18;478(7367):132-5. doi: 10.1038/nature10409.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics - Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21927003" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism/*pharmacology ; Bacteriophage T7/*enzymology ; Base Pairing/drug effects ; Binding, Competitive ; Biocatalysis/*drug effects ; DNA/chemistry/metabolism ; DNA Helicases/*chemistry/*metabolism ; DNA Primase/chemistry/metabolism ; DNA Replication ; DNA, Single-Stranded/chemistry/metabolism ; Hydrolysis/drug effects ; Kinetics ; Models, Biological ; Nucleic Acid Denaturation/drug effects ; Protein Subunits/chemistry/*metabolism ; Thermodynamics ; Thymine Nucleotides/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-23
    Description: Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079543/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Patel, Sanket -- Gibson, Molly K -- Lauber, Christian L -- Knight, Rob -- Fierer, Noah -- Dantas, Gautam -- DP2 DK098089/DK/NIDDK NIH HHS/ -- DP2-DK-098089/DK/NIDDK NIH HHS/ -- GM 007067/GM/NIGMS NIH HHS/ -- T32 GM007067/GM/NIGMS NIH HHS/ -- T32 HG000045/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):612-6. doi: 10.1038/nature13377. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2]. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3]. ; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA [2] Howard Hughes Medical Institute, Boulder, Colorado 80309, USA. ; 1] Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847883" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Anti-Bacterial Agents/pharmacology ; Bacteria/classification/drug effects/*genetics/*isolation & purification ; Drug Resistance, Microbial/drug effects/*genetics ; *Ecosystem ; Fertilizers ; Gene Transfer, Horizontal/genetics ; Genes, Bacterial/drug effects/genetics ; Genome, Bacterial/drug effects/genetics ; Integrases/genetics ; Metagenome/drug effects/*genetics ; Metagenomics ; Models, Genetic ; Molecular Sequence Data ; Nitrogen/metabolism/pharmacology ; Open Reading Frames/genetics ; *Phylogeny ; Poaceae/growth & development ; RNA, Ribosomal, 16S/genetics ; *Soil Microbiology ; Synteny/genetics ; Transposases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...