Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
    Type of Publication: Journal article published
    PubMed ID: 27252175
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Importance: Low-density lipoprotein cholesterol (LDL-C)-lowering alleles in or near NPC1L1 or HMGCR, encoding the respective molecular targets of ezetimibe and statins, have previously been used as proxies to study the efficacy of these lipid-lowering drugs. Alleles near HMGCR are associated with a higher risk of type 2 diabetes, similar to the increased incidence of new-onset diabetes associated with statin treatment in randomized clinical trials. It is unknown whether alleles near NPC1L1 are associated with the risk of type 2 diabetes. Objective: To investigate whether LDL-C-lowering alleles in or near NPC1L1 and other genes encoding current or prospective molecular targets of lipid-lowering therapy (ie, HMGCR, PCSK9, ABCG5/G8, LDLR) are associated with the risk of type 2 diabetes. Design, Setting, and Participants: The associations with type 2 diabetes and coronary artery disease of LDL-C-lowering genetic variants were investigated in meta-analyses of genetic association studies. Meta-analyses included 50775 individuals with type 2 diabetes and 270269 controls and 60801 individuals with coronary artery disease and 123504 controls. Data collection took place in Europe and the United States between 1991 and 2016. Exposures: Low-density lipoprotein cholesterol-lowering alleles in or near NPC1L1, HMGCR, PCSK9, ABCG5/G8, and LDLR. Main Outcomes and Measures: Odds ratios (ORs) for type 2 diabetes and coronary artery disease. Results: Low-density lipoprotein cholesterol-lowering genetic variants at NPC1L1 were inversely associated with coronary artery disease (OR for a genetically predicted 1-mmol/L [38.7-mg/dL] reduction in LDL-C of 0.61 [95% CI, 0.42-0.88]; P = .008) and directly associated with type 2 diabetes (OR for a genetically predicted 1-mmol/L reduction in LDL-C of 2.42 [95% CI, 1.70-3.43]; P 〈 .001). For PCSK9 genetic variants, the OR for type 2 diabetes per 1-mmol/L genetically predicted reduction in LDL-C was 1.19 (95% CI, 1.02-1.38; P = .03). For a given reduction in LDL-C, genetic variants were associated with a similar reduction in coronary artery disease risk (I2 = 0% for heterogeneity in genetic associations; P = .93). However, associations with type 2 diabetes were heterogeneous (I2 = 77.2%; P = .002), indicating gene-specific associations with metabolic risk of LDL-C-lowering alleles. Conclusions and Relevance: In this meta-analysis, exposure to LDL-C-lowering genetic variants in or near NPC1L1 and other genes was associated with a higher risk of type 2 diabetes. These data provide insights into potential adverse effects of LDL-C-lowering therapy.
    Type of Publication: Journal article published
    PubMed ID: 27701660
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: INHIBITOR ; RISK ; TRIAL ; EVENTS ; SERUM-LEVELS ; ARTERY-DISEASE ; MENDELIAN RANDOMIZATION ; HEALTHY-MEN ; EPIC-NORFOLK ; ACUTE CORONARY SYNDROMES
    Abstract: OBJECTIVES: This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. BACKGROUND: Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy. METHODS: We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable. RESULTS: PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE. CONCLUSIONS: Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
    Type of Publication: Journal article published
    PubMed ID: 23916927
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: MORTALITY ; GLUCOSE ; DIABETES-MELLITUS ; GUIDELINES ; ADULTS ; METAANALYSIS ; STATISTICAL-METHODS ; TASK-FORCE ; risk score
    Abstract: IMPORTANCE The value of measuring levels of glycated hemoglobin (HbA(1c)) for the prediction of first cardiovascular events is uncertain. OBJECTIVE To determine whether adding information on HbA(1c) values to conventional cardiovascular risk factors is associated with improvement in prediction of cardiovascular disease (CVD) risk. DESIGN, SETTING, AND PARTICIPANTS Analysis of individual-participant data available from 73 prospective studies involving 294 998 participants without a known history of diabetes mellitus or CVD at the baseline assessment. MAIN OUTCOMES AND MEASURES Measures of risk discrimination for CVD outcomes (eg, C-index) and reclassification (eg, net reclassification improvement) of participants across predicted 10-year risk categories of low (〈5%), intermediate (5% to 〈7.5%), and high (〉= 7.5%) risk. RESULTS During a median follow-up of 9.9 (interquartile range, 7.6-13.2) years, 20 840 incident fatal and nonfatal CVD outcomes (13 237 coronary heart disease and 7603 stroke outcomes) were recorded. In analyses adjusted for several conventional cardiovascular risk factors, there was an approximately J-shaped association between HbA(1c) values and CVD risk. The association between HbA(1c) values and CVD risk changed only slightly after adjustment for total cholesterol and triglyceride concentrations or estimated glomerular filtration rate, but this association attenuated somewhat after adjustment for concentrations of high-density lipoprotein cholesterol and C-reactive protein. The C-index for a CVD risk prediction model containing conventional cardiovascular risk factors alone was 0.7434 (95% CI, 0.7350 to 0.7517). The addition of information on HbA(1c) was associated with a C-index change of 0.0018 (0.0003 to 0.0033) and a net reclassification improvement of 0.42 (-0.63 to 1.48) for the categories of predicted 10-year CVD risk. The improvement provided by HbA(1c) assessment in prediction of CVD risk was equal to or better than estimated improvements for measurement of fasting, random, or postload plasma glucose levels. CONCLUSIONS AND RELEVANCE In a study of individuals without known CVD or diabetes, additional assessment of HbA(1c) values in the context of CVD risk assessment provided little incremental benefit for prediction of CVD risk.
    Type of Publication: Journal article published
    PubMed ID: 24668104
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: FOLLOW-UP ; COHORT ; IMPACT ; DIABETES-MELLITUS ; STROKE ; CARDIOVASCULAR-DISEASE ; CORONARY-HEART-DISEASE ; FASTING GLUCOSE ; PRIOR MYOCARDIAL-INFARCTION ; MILLION PEOPLE
    Abstract: IMPORTANCE The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS Age-and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689 300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128 843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499 808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES All-cause mortality and estimated reductions in life expectancy. RESULTS In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.
    Type of Publication: Journal article published
    PubMed ID: 26151266
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
    Type of Publication: Journal article published
    PubMed ID: 27252175
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Abstract: BACKGROUND: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease. METHODS: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12.5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5.6 years [5th-95th percentile 1.04-13.5]) from 71 011 participants from 37 studies. FINDINGS: In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5.4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1.14, 95% CI, 1.10-1.17), coronary disease excluding myocardial infarction (1.06, 1.00-1.11), heart failure (1.09, 1.03-1.15), fatal hypertensive disease (1.24, 1.15-1.33); and fatal aortic aneurysm (1.15, 1.03-1.28). By contrast, increased alcohol consumption was log-linearly associated with a lower risk of myocardial infarction (HR 0.94, 0.91-0.97). In comparison to those who reported drinking 〉0-〈/=100 g per week, those who reported drinking 〉100-〈/=200 g per week, 〉200-〈/=350 g per week, or 〉350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively. INTERPRETATION: In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines. FUNDING: UK Medical Research Council, British Heart Foundation, National Institute for Health Research, European Union Framework 7, and European Research Council.
    Type of Publication: Journal article published
    PubMed ID: 29676281
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: BACKGROUND: The extent to which diabetes mellitus or hyperglycemia is related to risk of death from cancer or other nonvascular conditions is uncertain. METHODS: We calculated hazard ratios for cause-specific death, according to baseline diabetes status or fasting glucose level, from individual-participant data on 123,205 deaths among 820,900 people in 97 prospective studies. RESULTS: After adjustment for age, sex, smoking status, and body-mass index, hazard ratios among persons with diabetes as compared with persons without diabetes were as follows: 1.80 (95% confidence interval [CI], 1.71 to 1.90) for death from any cause, 1.25 (95% CI, 1.19 to 1.31) for death from cancer, 2.32 (95% CI, 2.11 to 2.56) for death from vascular causes, and 1.73 (95% CI, 1.62 to 1.85) for death from other causes. Diabetes (vs. no diabetes) was moderately associated with death from cancers of the liver, pancreas, ovary, colorectum, lung, bladder, and breast. Aside from cancer and vascular disease, diabetes (vs. no diabetes) was also associated with death from renal disease, liver disease, pneumonia and other infectious diseases, mental disorders, nonhepatic digestive diseases, external causes, intentional self-harm, nervous-system disorders, and chronic obstructive pulmonary disease. Hazard ratios were appreciably reduced after further adjustment for glycemia measures, but not after adjustment for systolic blood pressure, lipid levels, inflammation or renal markers. Fasting glucose levels exceeding 100 mg per deciliter (5.6 mmol per liter), but not levels of 70 to 100 mg per deciliter (3.9 to 5.6 mmol per liter), were associated with death. A 50-year-old with diabetes died, on average, 6 years earlier than a counterpart without diabetes, with about 40% of the difference in survival attributable to excess nonvascular deaths. CONCLUSIONS: In addition to vascular disease, diabetes is associated with substantial premature death from several cancers, infectious diseases, external causes, intentional self-harm, and degenerative disorders, independent of several major risk factors. (Funded by the British Heart Foundation and others.).
    Type of Publication: Journal article published
    PubMed ID: 21366474
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: COMBINATION ; FOLLOW-UP ; SUPPORT ; DEATH ; DISEASE ; LONG-TERM ; RISK ; RISK-FACTORS ; ASSOCIATION ; DISTRIBUTIONS ; DESIGN ; risk factors ; RATES ; RISK FACTOR ; cholesterol ; lipids ; LOW-DENSITY-LIPOPROTEIN ; EUROPE ; HEART-DISEASE ; STROKE ; REGRESSION ; SUBSET ; prospective studies ; CORONARY-HEART-DISEASE ; METAANALYSIS ; LEVEL ; prospective ; prospective study ; HDL CHOLESTEROL ; RISK-FACTOR ; coronary heart disease ; lipid ; outcome ; hazard ratio ; 33 ; low-density lipoprotein cholesterol
    Abstract: CONTEXT: Associations of major lipids and apolipoproteins with the risk of vascular disease have not been reliably quantified. OBJECTIVE: To assess major lipids and apolipoproteins in vascular risk. DESIGN, SETTING, AND PARTICIPANTS: Individual records were supplied on 302,430 people without initial vascular disease from 68 long-term prospective studies, mostly in Europe and North America. During 2.79 million person-years of follow-up, there were 8857 nonfatal myocardial infarctions, 3928 coronary heart disease [CHD] deaths, 2534 ischemic strokes, 513 hemorrhagic strokes, and 2536 unclassified strokes. MAIN OUTCOME MEASURES: Hazard ratios (HRs), adjusted for several conventional factors, were calculated for 1-SD higher values: 0.52 log(e) triglyceride, 15 mg/dL high-density lipoprotein cholesterol (HDL-C), 43 mg/dL non-HDL-C, 29 mg/dL apolipoprotein AI, 29 mg/dL apolipoprotein B, and 33 mg/dL directly measured low-density lipoprotein cholesterol (LDL-C). Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. RESULTS: The rates of CHD per 1000 person-years in the bottom and top thirds of baseline lipid distributions, respectively, were 2.6 and 6.2 with triglyceride, 6.4 and 2.4 with HDL-C, and 2.3 and 6.7 with non-HDL-C. Adjusted HRs for CHD were 0.99 (95% CI, 0.94-1.05) with triglyceride, 0.78 (95% CI, 0.74-0.82) with HDL-C, and 1.50 (95% CI, 1.39-1.61) with non-HDL-C. Hazard ratios were at least as strong in participants who did not fast as in those who did. The HR for CHD was 0.35 (95% CI, 0.30-0.42) with a combination of 80 mg/dL lower non-HDL-C and 15 mg/dL higher HDL-C. For the subset with apolipoproteins or directly measured LDL-C, HRs were 1.50 (95% CI, 1.38-1.62) with the ratio non-HDL-C/HDL-C, 1.49 (95% CI, 1.39-1.60) with the ratio apo B/apo AI, 1.42 (95% CI, 1.06-1.91) with non-HDL-C, and 1.38 (95% CI, 1.09-1.73) with directly measured LDL-C. Hazard ratios for ischemic stroke were 1.02 (95% CI, 0.94-1.11) with triglyceride, 0.93 (95% CI, 0.84-1.02) with HDL-C, and 1.12 (95% CI, 1.04-1.20) with non-HDL-C. CONCLUSION: Lipid assessment in vascular disease can be simplified by measurement of either total and HDL cholesterol levels or apolipoproteins without the need to fast and without regard to triglyceride.
    Type of Publication: Journal article published
    PubMed ID: 19903920
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: ASSOCIATION ; primary prevention ; COST-EFFECTIVENESS ; inflammation ; CORONARY-HEART-DISEASE ; METAANALYSIS ; PRACTICE GUIDELINES ; STATIN THERAPY ; NONVASCULAR MORTALITY ; RISK PROFILE
    Abstract: BACKGROUND: There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events. METHODS: We analyzed data from 52 prospective studies that included 246,669 participants without a history of cardiovascular disease to investigate the value of adding CRP or fibrinogen levels to conventional risk factors for the prediction of cardiovascular risk. We calculated measures of discrimination and reclassification during follow-up and modeled the clinical implications of initiation of statin therapy after the assessment of CRP or fibrinogen. RESULTS: The addition of information on high-density lipoprotein cholesterol to a prognostic model for cardiovascular disease that included age, sex, smoking status, blood pressure, history of diabetes, and total cholesterol level increased the C-index, a measure of risk discrimination, by 0.0050. The further addition to this model of information on CRP or fibrinogen increased the C-index by 0.0039 and 0.0027, respectively (P〈0.001), and yielded a net reclassification improvement of 1.52% and 0.83%, respectively, for the predicted 10-year risk categories of "low" (〈10%), "intermediate" (10% to 〈20%), and "high" (〉/=20%) (P〈0.02 for both comparisons). We estimated that among 100,000 adults 40 years of age or older, 15,025 persons would initially be classified as being at intermediate risk for a cardiovascular event if conventional risk factors alone were used to calculate risk. Assuming that statin therapy would be initiated in accordance with Adult Treatment Panel III guidelines (i.e., for persons with a predicted risk of 〉/=20% and for those with certain other risk factors, such as diabetes, irrespective of their 10-year predicted risk), additional targeted assessment of CRP or fibrinogen levels in the 13,199 remaining participants at intermediate risk could help prevent approximately 30 additional cardiovascular events over the course of 10 years. CONCLUSIONS: In a study of people without known cardiovascular disease, we estimated that under current treatment guidelines, assessment of the CRP or fibrinogen level in people at intermediate risk for a cardiovascular event could help prevent one additional event over a period of 10 years for every 400 to 500 people screened. (Funded by the British Heart Foundation and others.).
    Type of Publication: Journal article published
    PubMed ID: 23034020
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...