Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Publisher
Years
  • 1
    Abstract: The insulin-like growth factor (IGF)2/IGF1 receptor (IGF1R) signaling axis has an important role in intestinal carcinogenesis and overexpression of IGF2 is an accepted risk factor for colorectal cancer (CRC) development. Genetic amplifications and loss of imprinting contribute to the upregulation of IGF2, but insufficiently explain the extent of IGF2 expression in a subset of patients. Here, we show that IGF2 was specifically induced in the tumor stroma of CRC and identified cancer-associated fibroblasts (CAFs) as the major source. Further, we provide functional evidence that stromal IGF2, via the paracrine IGF1R/insulin receptor axis, activated pro-survival AKT signaling in CRC cell lines. In addition to its effects on malignant cells, autocrine IGF2/IGF1R signaling in CAFs induced myofibroblast differentiation in terms of alpha-smooth muscle actin expression and contractility in floating collagen gels. This was further augmented in concert with transforming growth factor-beta (TGFbeta) signaling suggesting a cooperative mechanism. However, we demonstrated that IGF2 neither induced TGFbeta/smooth muscle actin/mothers against decapentaplegic (SMAD) signaling nor synergized with TGFbeta to hyperactivate this pathway in two dimensional and three dimensional cultures. IGF2-mediated physical matrix remodeling by CAFs, but not changes in extracellular matrix-modifying proteases or other secreted factors acting in a paracrine manner on/in cancer cells, facilitated subsequent tumor cell invasion in organotypic co-cultures. Consistently, colon cancer cells co-inoculated with CAFs expressing endogenous IGF2 in mouse xenograft models exhibited elevated invasiveness and dissemination capacity, as well as increased local tumor regrowth after primary tumor resection compared with conditions with IGF2-deficient CAFs. In line, expression of IGF2 correlated with elevated relapse rates and poor survival in CRC patients. In agreement with our results, high-level coexpression of IGF2 and TGFbeta was predicting adverse outcome with higher accuracy than increased expression of the individual genes alone. Taken together, we demonstrate that stroma-induced IGF2 promotes colon cancer progression in a paracrine and autocrine manner and propose IGF2 as potential target for tumor stroma cotargeting strategies.
    Type of Publication: Journal article published
    PubMed ID: 28534511
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost alpha-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.
    Type of Publication: Journal article published
    PubMed ID: 29348601
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 3 (1924), S. 314-316 
    ISSN: 1432-1440
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...