Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Composting relies on a complex network of bacteria and fungi to process crude organic material. Although it is known that these organisms drive dynamic changes in temperature and pH, little is known about the temporal dynamics of fungal populations during the rise to thermophilic conditions. This study employed F-ARISA (fungal-automated rRNA intergenic spacer analysis) and 18S rRNA gene cloning and sequencing to examine changes in community structure during this period. Sequencing of the 18S rRNA portion of cloned F-ARISA products revealed the presence of four distinct fungal genera including Backusella sp., Mucoraceae, Geotrichum sp. and the yeast Pichia sp. Based on the presence and absence of these ARISA operational taxonomic units (A-OTUs), we observed a shift in fungal community structure between 48 and 60 h. This change in community structure preceded a rise in pH and coincided with an increase in temperature. Clone libraries constructed using fungi-specific 18S rRNA primers contained sequences similar to several other fungal genera including Penicillium sp., Aspergillus sp., Hamigera sp., Neurospora sp. and the yeast Candida sp. While the fungal species richness was relatively low at any time point, the community structure was dynamic and paralleled changes in bacterial community structure.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The initial phase of composting is the most dynamic part of the process and is characterized by rapid increases in temperature, large swings in pH, and the degradation of simple organic compounds. DNA samples were taken from an active compost system to determine the microbial 16S rRNA gene sequences that were present during this phase. We observed two significant shifts in the composition of the microbial community, one between 12 and 24 h and the other between 60 and 72 h into the process using automated 16S–23S rRNA intergenic spacer amplification (ARISA). The 16S rRNA gene sequences adjoining the most common ARISA fragments at each time point were determined. We found that sequences related to lactic acid bacteria were most common during the first 60 h and Bacillus-type sequences were most common between 72 and 96 h. While the temperature increased steadily over the first 96 h, the pH dropped after 12 h and increased after 60 h correlating with the shift from Bacillus to lactic acid sequences and the later return to Bacillus-type sequences.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 525-552 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Uncultured microorganisms comprise the majority of the planet's biological diversity. Microorganisms represent two of the three domains of life and contain vast diversity that is the product of an estimated 3.8 billion years of evolution. In many environments, as many as 99% of the microorganisms cannot be cultured by standard techniques, and the uncultured fraction includes diverse organisms that are only distantly related to the cultured ones. Therefore, culture-independent methods are essential to understand the genetic diversity, population structure, and ecological roles of the majority of microorganisms. Metagenomics, or the culture-independent genomic analysis of an assemblage of microorganisms, has potential to answer fundamental questions in microbial ecology. This review describes progress toward understanding the biology of uncultured Bacteria, Archaea, and viruses through metagenomic analyses.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...