Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1600-0501
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aim of the present study was (1) to test whether or not platelet-rich plasma (PRP) or commercially available fibrin can increase bone regeneration compared with non-treated defects and (2) to test whether or not PRP or fibrin increases bone regeneration when used as a delivery system for recombinant human bone morphogenetic protein-2 (rhBMP-2). In 16 New Zealand White rabbits, four evenly distributed 6 mm diameter defects were drilled into the calvarial bone. The following five treatment modalities were randomly allocated to all 64 defects: (0) untreated control, (1) fibrin alone, (2) PRP alone, (3) fibrin with 15 μg rhBMP-2 and (4) PRP with 15 μg rhBMP-2. For the fibrin gels and the PRP containing rhBMP-2, the 15 μg rhBMP-2 was incorporated by precipitation within the matrices before their gelation. After 4 weeks, the animals were sacrificed and the calvarial bones were removed for histological preparation. The area fraction of newly formed bone was determined in vertical sections from the middle of the defect by applying histomorphometrical analysis. A mean area fraction of newly formed bone was found within the former defect of 23.4% (±13.5%) in the control sites, of 28.4% (±17.4%) in the fibrin sites and of 34.5% (±17.4%) in the PRP sites. The statistical analysis revealed no significant difference in bone formation between the three groups (ANOVA). Addition of 15 μg rhBMP-2 in the fibrin gel (59.9±20.3%) and the PRP gels (63.1±25.3%) increased bone formation significantly. No significant difference was observed between sites, where PRP or fibrin has been used as a delivery system for rhBMP-2 (ANOVA). In conclusion, the application of fibrin gels or PRP gels to bone defects is not superior to leaving the defect untreated. Regarding the amount of bone formation, the application of 15 μg rhBMP-2 in bone defects enhances the healing significantly at 4 weeks. In this animal model, commercially available fibrin and autologous PRP gels are equally effective as delivery systems for rhBMP-2.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We have engineered synthetic poly(ethylene glycol) (PEG)–based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...