Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 3915-3927 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A framework for estimating heating and expected temperature rise in current carrying molecular junctions is described. Our approach is based on applying the Redfield approximation to a tight binding model for the molecular bridge supplemented by coupling to a phonon bath. This model, used previously to study thermal relaxation effects on electron transfer and conduction in molecular junctions, is extended and used to evaluate the fraction of available energy, i.e., of the potential drop, that is released as heat on the molecular bridge. Classical heat conduction theory is then applied to estimate the expected temperature rise. For a reasonable choice of molecular parameters and for junctions carrying currents in the nA range, we find the temperature rise to be a modest few degrees. It is argued, however, that using classical theory to describe heat transport away from the junction may underestimate the heating effect. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 1569-1579 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we examine, within simple models, different approaches to computing tunneling probabilities in super-exchange models of electron transfer. The relationship between tunneling calculations that use scattering theory type formalisms and approaches based on standing waves, which are more closely related to electron transfer between bound donor and acceptor states, is established. Transmission probabilities computed by using truncated basis representations are compared to exact analytical or numerical results for one- and two-dimensional models. We find that while resonance tunneling is well approximated by truncated basis approaches, computing deep tunneling using such basis sets can lead to large errors. Implications for calculations of bridge assisted electron transfer are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...