Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: GENE-EXPRESSION ; DIFFERENTIATION ; TUMORS ; BIOLOGY ; PROGRESSION ; PHENOTYPE ; P-TEFB ; RISK STRATIFICATION ; SUBGROUPS ; MIRNA EXPRESSION
    Abstract: Neuroblastoma, a childhood cancer that originates from neural crest-derived cells, is the most common deadly solid tumor of infancy. Amplification of the MYCN oncogene, which occurs in approximately 20-25% of human neuroblastomas, is the most prominent genetic marker of high-stage disease. The availability of valid preclinical in vivo models is a prerequisite to develop novel targeted therapies. We here report on the generation of transgenic mice with Cre-conditional induction of MYCN in dopamine beta-hydroxylase-expressing cells, termed LSL-MYCN;Dbh-iCre. These mice develop neuroblastic tumors with an incidence of 〉75%, regardless of strain background. Molecular profiling of tumors revealed upregulation of the MYCN-dependent miR-17-92 cluster as well as expression of neuroblastoma marker genes, including tyrosine hydroxylase and the neural cell adhesion molecule 1. Gene set enrichment analyses demonstrated significant correlation with MYC-associated expression patterns. Array comparative genome hybridization showed that chromosomal aberrations in LSL-MYCN;Dbh-iCre tumors were syntenic to those observed in human neuroblastomas. Treatment of a cell line established from a tumor derived from a LSL-MYCN;Dbh-iCre mouse with JQ1 or MLN8237 reduced cell viability and demonstrated oncogene addiction to MYCN. Here we report establishment of the first Cre-conditional human MYCN-driven mouse model for neuroblastoma that closely recapitulates the human disease with respect to tumor localization, histology, marker expression and genomic make up. This mouse model is a valuable tool for further functional studies and to assess the effect of targeted therapies.Oncogene advance online publication, 1 September 2014; doi:10.1038/onc.2014.269.
    Type of Publication: Journal article published
    PubMed ID: 25174395
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; CELLS ; EXPRESSION ; SURVIVAL ; Germany ; INFORMATION ; RISK ; GENE ; GENE-EXPRESSION ; GENES ; microarray ; ACCURACY ; validation ; PATIENT ; MARKER ; prognosis ; microarrays ; DESIGN ; PCR ; bioinformatics ; PREDICTION ; RISK ASSESSMENT ; experimental design ; CHILDREN ; real-time PCR ; expression profiling ; HIGH-LEVEL ; MYCN ; neuroblastoma ; ONCOLOGY ; RE ; ARRAY ; REAL-TIME ; analysis ; methods ; PROFILES ; EXPRESSION PROFILES ; USA ; correlation ; cancer research ; MICROARRAY PLATFORMS ; PREDICT ; quantitative ; PLATFORM ; outcome ; CLASSIFIERS
    Abstract: Purpose: To assess the feasibility of predicting neuroblastoma outcome using highly parallel quantitative real-time PCR data. Experimental Design: We generated expression profiles of 63 neuroblastoma patients, 47 of which were analyzed by both Affymetrix U95A microarrays and highly parallel real-time PCR on microfluidic cards (MFC; Applied Biosystems). Top-ranked genes discriminating patients with event-free survival or relapse according to high-level analysis of Affymetrix chip data, as well as known neuroblastoma marker genes (MYCN and NTRK1/TrkA), were quantified simultaneously by real-time PCR. Analysis of PCR data was accomplished using high-level bioinformatics methods including prediction analysis of microarray, significance analysis of microarray, and Computerized Affected Sibling Pair Analyzer and Reporter. Results: Internal validation of the MFC method proved it highly reproducible. Correlation of MFC and chip expression data varied markedly for some genes. Outcome prediction using prediction analysis of microarray on real-time PCR data resulted in 80% accuracy, which is comparable to results obtained using the Affymetrix platform. Real-time PCR data were useful for risk assessment of relapsing neuroblastoma (P = 0.0006, log-rank test) when Computerized Affected Sibling Pair Analyzer and Reporter analysis was applied. Conclusions: These data suggest that multiplex real-time PCR might be a promising approach to reduce the complexity of information obtained from whole-genome array experiments. It could provide a more convenient and less expensive too[ for routine application in a clinical setting
    Type of Publication: Journal article published
    PubMed ID: 17332289
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; EXPRESSION ; GROWTH ; tumor ; CELL ; MODEL ; PATHWAY ; PATHWAYS ; COHORT ; DISEASE ; GENE ; GENE-EXPRESSION ; RNA ; DIFFERENTIATION ; TUMORS ; ACTIVATION ; BINDING ; BIOLOGY ; TARGET ; CHROMATIN ; gene expression ; PROMOTER ; genetics ; MODULATION ; C-MYC ; REPRESSION ; TRANSCRIPTIONAL REPRESSION ; MYCN ; neuroblastoma ; N-MYC ; signaling ; ONCOLOGY ; B-CELL LYMPHOMAS ; miRNA ; outcome ; MICRORNA ; CELL BIOLOGY ; Genetic ; COHORTS ; EXPRESSION SIGNATURES ; PATHWAY DEREGULATION
    Abstract: Increased activity of MYC protein-family members is a common feature in many cancers. Using neuroblastoma as a tumor model, we established a microRNA (miRNA) signature for activated MYCN/c-MYC signaling in two independent primary neuroblastoma tumor cohorts and provide evidence that c-MYC and MYCN have overlapping functions. On the basis of an integrated approach including miRNA and messenger RNA (mRNA) gene expression data we show that miRNA activation contributes to widespread mRNA repression, both in c-MYC- and MYCN-activated tumors. c-MYC/MYCN-induced miRNA activation was shown to be dependent on c-MYC/MYCN promoter binding as evidenced by chromatin immunoprecipitation. Finally, we show that pathways, repressed through c-MYC/MYCN miRNA activation, are highly correlated to tumor aggressiveness and are conserved across different tumor entities suggesting that c-MYC/MYCN activate a core set of miRNAs for cooperative repression of common transcriptional programs related to disease aggressiveness. Our results uncover a widespread correlation between miRNA activation and c-MYC/MYCN-mediated coding gene expression modulation and further substantiate the overlapping functions of c-MYC and MYCN in the process of tumorigenesis. Oncogene (2010) 29, 1394-1404; doi:10.1038/onc.2009.429; published online 30 November 2009
    Type of Publication: Journal article published
    PubMed ID: 19946337
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; EXPRESSION ; CLASSIFICATION ; QUANTIFICATION ; GENE ; GENE-EXPRESSION ; TUMORS ; PATTERNS ; PATHOGENESIS ; REVEALS ; PREDISPOSITION ; ANAPLASTIC LYMPHOMA KINASE ; ACTIVATING MUTATIONS
    Abstract: Purpose: Genomic alterations of the anaplastic lymphoma kinase (ALK) gene have been postulated to contribute to neuroblastoma pathogenesis. This study aimed to determine the interrelation of ALK mutations, ALK expression levels, and clinical phenotype in primary neuroblastoma. Experimental Design: The genomic ALK status and global gene expression patterns were examined in 263 primary neuroblastomas. Allele-specific ALK expression was determined by cDNA cloning and sequencing. Associations of genomic ALK alterations and ALK expression levels with clinical phenotypes and transcriptomic profiles were compared. Results: Nonsynonymous point mutations of ALK were detected in 21 of 263 neuroblastomas (8%). Tumors with ALK mutations exhibited about 2-fold elevated median ALK mRNA levels in comparison with tumors with wild-type (WT) ALK. Unexpectedly, the WT allele was preferentially expressed in 12 of 21 mutated tumors. Whereas survival of patients with ALK mutated tumors was significantly worse as compared with the entire cohort of WT ALK patients, it was similarly poor in patients with WT ALK tumors in which ALK expression was as high as in ALK mutated neuroblastomas. Global gene expression patterns of tumors with ALK mutations or with high-level WT ALK expression were highly similar, and suggested that ALK may be involved in cellular proliferation in primary neuroblastoma. Conclusions: Primary neuroblastomas with mutated ALK exhibit high ALK expression levels and strongly resemble neuroblastomas with elevated WT ALK expression levels in both their clinical and molecular phenotypes. These data suggest that high levels of mutated and WT ALK mediate similar molecular functions that may contribute to a malignant phenotype in primary neuroblastoma.
    Type of Publication: Journal article published
    PubMed ID: 21632861
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; GENE ; CELL-CYCLE ; DOWN-REGULATION ; TARGET ; PROSTATE-CANCER ; beta-catenin ; N-MYC ; RNA INTERFERENCE ; REIC/DKK-3
    Abstract: Neuroblastoma (NB) is a paediatric tumour with a remarkable diverse clinical behaviour. Approximately half of the high stage aggressive tumours are characterized by MYCN gene amplification but our understanding of the role of MYCN in NB oncogenesis is incomplete. Previous studies have shown that MYCN expression is inversely correlated with expression of Dickkopf-3 (DKK3), a gene encoding an extracellular protein with presumed tumour suppressor activity, but direct MYCN regulation of DKK3 was excluded leaving the mechanism of regulation unexplained. Given the recently established role of MYCN-regulated miRNAs in downregulation of protein-coding genes and predicted seeds for miR-17-92 cluster members within the DKK3 3'UTR, we hypothesized that this mechanism would act in MYCN regulation of DKK3. To investigate this, we used a validated miR-17-92-inducible cellular system and could demonstrate robust downregulation of DKK3 mRNA and protein levels upon miR-17-92 overexpression. Next, two of the three predicted miRNAs, miR-19b and miR-92a, were shown to lower DKK3 protein levels, in addition to measurable DKK3 mRNA knock-down by miR-92a. Direct interaction between miR-19b or miR-92a and the 3'UTR of DKK3 was validated using luciferase reporter assays. In conclusion, this study demonstrates that the MYCN-induced downregulation of DKK3 results from direct upregulation of miR-17-92 components effecting both DKK3 mRNA stability and translation which further contributes to the pleiotropic oncogenic effect of elevated MYCN levels. The strict MYCN-mediated regulation of DKK3 is suggestive for an important downstream function of the MYCN protein and thus warrants further investigations to unravel the role of DKK3 in NB.
    Type of Publication: Journal article published
    PubMed ID: 21796614
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CANCER ; EXPRESSION ; tumor ; ACTIVATION ; RESPONSES ; C-MYC ; neuroblastoma ; CHROMOSOMES ; SUBGROUPS ; BRD4
    Abstract: Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma. Recent studies using the selective small molecule BET inhibitor, JQ1, have identified BET bromodomain proteins, especially BRD4, as epigenetic regulatory factors for MYC and its targets. Targeting MYC expression by BET inhibition resulted in antitumoral effects in various cancers. Our aim here was to evaluate the efficacy of JQ1 against preclinical models for high-risk MYC-driven medulloblastoma. Treatment of medulloblastoma cell lines with JQ1 significantly reduced cell proliferation and preferentially induced apoptosis in cells expressing high levels of MYC. JQ1 treatment of medulloblastoma cell lines downregulated MYC expression and resulted in a transcriptional deregulation of MYC targets, and also significantly altered expression of genes involved in cell cycle progression and p53 signalling. JQ1 treatment prolonged the survival of mice harboring medulloblastoma xenografts and reduced the tumor burden in these mice. Our preclinical data provide evidence to pursue testing BET inhibitors, such as JQ1, as molecular targeted therapeutic options for patients with high-risk medulloblastomas overexpressing MYC or harboring MYC amplifications.
    Type of Publication: Journal article published
    PubMed ID: 24231268
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; ONCOGENE ; MYCN ; CHROMOSOME 1P ; MicroRNAs ; AURORA-B ; YM155
    Abstract: MicroRNAs (miRNAs) are deregulated in a variety of human cancers, including neuroblastoma, the most common extracranial tumor of childhood. We previously reported a signature of 42 miRNAs to be highly predictive of neuroblastoma outcome. One miRNA in this signature, miR-542, was downregulated in tumors from patients with adverse outcome. Reanalysis of quantitative PCR and next-generation sequencing transcript data revealed that miR-542-5p as well as miR-542-3p expression is inversely correlated with poor prognosis in neuroblastoma patients. We, therefore, analyzed the function of miR-542 in neuroblastoma tumor biology. Ectopic expression of miR-542-3p in neuroblastoma cell lines reduced cell viability and proliferation, induced apoptosis and downregulated Survivin. Survivin expression was also inversely correlated with miR-542-3p expression in primary neuroblastomas. Reporter assays confirmed that miR-542-3p directly targeted Survivin. Downregulating Survivin using siRNA copied the phenotype of miR-542-3p expression in neuroblastoma cell lines, while cDNA-mediated ectopic expression of Survivin partially rescued the phenotype induced by miR-542-3p expression. Treating nude mice bearing neuroblastoma xenografts with miR-542-3p-loaded nanoparticles repressed Survivin expression, decreased cell proliferation and induced apoptosis in the respective xenograft tumors. We conclude that miR-542-3p exerts its tumor suppressive function in neuroblastoma, at least in part, by targeting Survivin. Expression of miR-542-3p could be a promising therapeutic strategy for treating aggressive neuroblastoma.
    Type of Publication: Journal article published
    PubMed ID: 25046253
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; EXPRESSION ; CELL-PROLIFERATION ; GENES ; PROTEIN ; IDENTIFICATION ; REVEALS ; MicroRNAs ; RELATIVE QUANTIFICATION ; FEEDBACK LOOP
    Abstract: LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3'UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefore establishing an MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promoter, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underline the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process.
    Type of Publication: Journal article published
    PubMed ID: 26123663
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: RECEPTOR ; CANCER ; GENES ; ASSOCIATION ; PHENOTYPE ; HETEROGENEITY ; N-MYC ; SIGNATURES ; ALK ; DNA METHYLATION DATA
    Abstract: Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
    Type of Publication: Journal article published
    PubMed ID: 26121086
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; GENE ; MYCN ; EXPRESSION PROFILES ; receptor tyrosine kinase ; SYMPATHETIC NEURONS ; THERAPEUTIC TARGET ; ACTIVATING MUTATIONS ; MEK INHIBITION ; MUTATED NEUROBLASTOMA
    Abstract: PURPOSE: Activating ALK mutations are present in almost 10% of primary neuroblastomas and mark patients for treatment with small-molecule ALK inhibitors in clinical trials. However, recent studies have shown that multiple mechanisms drive resistance to these molecular therapies. We anticipated that detailed mapping of the oncogenic ALK-driven signaling in neuroblastoma can aid to identify potential fragile nodes as additional targets for combination therapies. EXPERIMENTAL DESIGN: To achieve this goal, transcriptome profiling was performed in neuroblastoma cell lines with the ALK(F1174L) or ALK(R1275Q) hotspot mutations, ALK amplification, or wild-type ALK following pharmacologic inhibition of ALK using four different compounds. Next, we performed cross-species genomic analyses to identify commonly transcriptionally perturbed genes in MYCN/ALK(F1174L) double transgenic versus MYCN transgenic mouse tumors as compared with the mutant ALK-driven transcriptome in human neuroblastomas. RESULTS: A 77-gene ALK signature was established and successfully validated in primary neuroblastoma samples, in a neuroblastoma cell line with ALK(F1174L) and ALK(R1275Q) regulable overexpression constructs and in other ALKomas. In addition to the previously established PI3K/AKT/mTOR, MAPK/ERK, and MYC/MYCN signaling branches, we identified that mutant ALK drives a strong upregulation of MAPK negative feedback regulators and upregulates RET and RET-driven sympathetic neuronal markers of the cholinergic lineage. CONCLUSIONS: We provide important novel insights into the transcriptional consequences and the complexity of mutant ALK signaling in this aggressive pediatric tumor. The negative feedback loop of MAPK pathway inhibitors may affect novel ALK inhibition therapies, whereas mutant ALK induced RET signaling can offer novel opportunities for testing ALK-RET oriented molecular combination therapies. Clin Cancer Res; 21(14); 3327-39. (c)2015 AACR.
    Type of Publication: Journal article published
    PubMed ID: 25805801
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...