Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 59 (1994), S. 517-529 
    ISSN: 1432-0630
    Keywords: 79.60.−i ; 68.35.Bs ; 73.20.At ; 82.65.My
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A review of results obtained by Angle-Resolved UV-Photoelectron Spectroscopy (ARUPS) using linearly polarized synchrotron radiation is presented for two model systems, ethylene/Ni and benzene/Ni. It is shown that for these systems detailed conclusions concerning adsorbate/substrate and adsorbate/adsorbate interactions can be derived from ARUPS spectra using symmetry selection rules, and in combination with model calculations. In particular, electronic structure, bonding, orientation and symmetry of the adsorbates in dilute and saturated layers will be discussed. It is shown that at high adsorbate coverages lateral interactions in the adsorbate layer play a dominant role. Steric effects in densely packed layers can lead to a reorientation of the molecules as compared to the orientation of the single molecules. The ARUPS spectra of well ordered, densely packed layers exhibit significant (up to 2 eV) dispersion of the various adsorbate bands and allow detailed conclusions on two-dimensional adsorbate band structures.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The adsorption of acetylene on Ni(110) was investigated by temperature programmed desorption (TPD), low energy electron diffraction (LEED), angle resolved ultraviolet-photoelectron spectroscopy (ARUPS), and near edge x-ray absorption fine structure (NEXAFS) measurements, as well as by detailed model cluster calculations and slab model band structure calculations. By combining the experimental results and those of the cluster studies an orientation of the molecules is deduced with the C–C axis parallel to the surface and preferentially aligned along the substrate troughs ([11¯0] azimuth) as well as with a highly coordinated adsorption site in the substrate troughs. A detailed analysis of the photoemission spectrum is given. The proposed adsorption geometry is corroborated by band structure calculations for various alternative sites and orientations that are shown to be very sensitive to the azimuthal orientation of the adsorbed molecules. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 7494-7495 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The initial activation probability s0 for reactive dissociation of n-butane on Ir(110)–(1×2) exhibits at least two reaction channels. For one the direct collisional activation probability is at least 0.21 independent of incident kinetic energy, increasing to near 0.7 with decreasing surface temperature and kinetic energy of the incident beam of butane as a result of trapping of the species in the molecule–surface potential well. At kinetic energies above 120 kJ/mol the reaction probability again increases due to the onset of an activated route. Comparison to the results obtained with ethane suggests that energy transfer to the surface dissipates energy in the collision so that less energy is available to penetrate the longer range repulsive barrier in order to form carbon–metal and hydrogen–metal bonds.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 1902-1908 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: X-ray photoelectron spectroscopy (XPS) was used to study the initial stages of surface oxidation of pseudomorphic Ni monolayers on Cu(111). Oxygen was adsorbed at 150 K followed by annealing the sample to 300 K and 600 K, respectively. For oxygen coverages between 0.4 ML and 2.0 ML we find little change in the peak shapes of the O 1s XPS signal. The Ni 2p3/2 spectra change, however, drastically: the onset of the oxidation is marked by the appearance of a peak doublet shifted with respect to the peak of metallic Ni. Based on these spectra we find a minimum oxygen coverage of 0.7 ML necessary for the onset of oxidation. The oxidation is nearly complete after the adsorption of about 2.0 ML oxygen. The exposure of different Ni coverages (0.5–2.0 ML) to oxygen shows that oxidation takes place only in the top-most Ni layer. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: For condensed benzene ice layers, core photoabsorption near edge structure (x-ray absorption; recorded by Auger electron yield measurements), decay electron spectra for resonant and nonresonant excitation, and fragmentation as evident in yields of hydrogen and other ions, have been measured in the C1s region. The absorption spectrum is better resolved than most previously published spectra, exhibits some new features, and shows a high degree of parallelity to the spectrum of isolated molecules. Interestingly, the hydrogen ion yield indicates a particular dissociativeness of a certain core excitation resonance, X, which in the molecule has previously been assigned to a Rydberg state. This selective dissociation suggests that the responsible excitation is strongly antibonding for the carbon–hydrogen bond, while the degenerate Rydberg states broaden into a conduction band in the solid; and that the bond breaking probably occurs or at least starts in the core-excited state, thus proceeding on an extremely short time scale, similarly to observations for other hydrogen-containing molecules. The decay spectra are analyzed in terms of autoionization vs normal Auger decay and indicate that, apart from the first strong π resonance (which leads to pure autoionization) and the X resonance, the core resonances partly or fully ionize before core decay takes place. For the X resonance, the decay spectrum contains a contribution which cannot be assigned to intact benzene; this is taken as additional evidence for ultrafast dissociation, i.e., competitive with core decay. We use these results for a discussion of the influence of condensation on excitation, decay, and fragmentation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 3343-3352 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Near edge x-ray absorption spectra and decay electron spectra for resonant and nonresonant excitations in the C 1s and N 1s regions have been measured for condensed furan (C4H4O) and pyrrole (C4H4NH) layers. The decay spectra after resonant excitation into the lowest unoccupied orbital (π*4) are pure autoionization spectra. The participant channels show strong resonant enhancements of the photoelectron peaks, in particular after excitation of the C 1s core electrons. Overall however, the spectra are dominated by the spectator channels. The spectator spectra resemble the normal Auger spectra shifted by spectator shifts of ≈4 eV for furan and ≈2.5 eV for pyrrole. For furan the participant spectra for excitation at the two different carbon atoms show significant differences that can be qualitatively understood in terms of a simple one-electron picture by considering the localization of the corresponding orbitals on the core hole. The decay spectra after excitation into the π*5 orbital show negligible enhancement of the participant channel, a strongly reduced spectator shift, and less-pronounced structures than at higher photon energies. The latter is attributed to a competition of spectator decay and normal Auger decay after internal photoionization into Rydberg derived bands in the condensate. For excitations into the σ*-resonances pure Auger spectra are observed, indicating that these resonances fully ionize before core decay takes place.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using synchrotron radiation, Auger electron, and H+/D+-ion yields have been studied at and above the O 1s excitation energies for condensed H2O/D2O layers of varying thickness, and for two reproducible adsorbate layers (so-called bilayers and monolayers) on Ru(001). Decay electron spectra as well as polarization dependences, angular distributions, and energy distributions of desorbing ions have been investigated. For polarizations with sufficient E component perpendicular to the surface, a sharp peak in the H+ NEXAFS spectrum is seen for all layers which has no direct counterpart in the Auger NEXAFS spectra, and whose intensity maximizes for E oriented in the detection direction. This observation is interpreted as due to the 1a1→4a1 core-to-bound transition of the surface molecules whose final state decays electronically and dissociates on comparable time scales. This appears to have the consequence that the symmetry of the coupled excitation is different from that expected for the primary photoabsorption process. There appears also to be an influence of hydrogen bonding on these effects. Similarities and differences between the various layers investigated are also analyzed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...