Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; CELLS ; CELL ; Germany ; GENE ; PROTEIN ; PROTEINS ; TISSUE ; MICE ; TUMOR-NECROSIS-FACTOR ; DNA ; MACROPHAGES ; MECHANISM ; CONTRAST ; DENDRITIC CELLS ; KERATINOCYTES ; mechanisms ; SKIN ; T cell ; T cells ; T-CELL ; T-CELLS ; SUPPRESSION ; treatment ; cytokines ; TARGET ; MUTANT ; inactivation ; DNA-BINDING ; BETA ; MOUSE MODEL ; TARGETS ; side effects ; REPRESSION ; DIMERIZATION ; chemokine ; TNF-ALPHA ; NEUTROPHILS ; CYTOKINE ; molecular ; PERSISTENT ; RECOMBINANT ; INFILTRATION ; MOLECULAR-MECHANISM ; RE ; keratinocyte ; allergy ; IMMUNE SUPPRESSION ; chemokines ; INFLAMMATORY CYTOKINES ; MOLECULAR-MECHANISMS ; PHASE ; USA ; corticosteroids ; GLUCOCORTICOIDS ; RESISTANT ; SKIN INFLAMMATION ; CONTACT ; MEDICINE ; INFLAMMATORY RESPONSE ; EPIDERMAL LANGERHANS CELLS ; HYPERSENSITIVITY REACTIONS ; INFLAMMATORY PROTEIN-2
    Abstract: Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the and inflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding-defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1 beta, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-gamma-inducible protein 10. In contrast TNF-alpha repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required
    Type of Publication: Journal article published
    PubMed ID: 17446934
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; APOPTOSIS ; EXPRESSION ; IN-VITRO ; proliferation ; CELL ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; VIVO ; LONG-TERM ; GENE-EXPRESSION ; METABOLISM ; DIFFERENTIATION ; TISSUE ; MICE ; NF-KAPPA-B ; MECHANISM ; CONTRAST ; mechanisms ; BIOLOGY ; CELL-CYCLE ; SUPPRESSION ; cytokines ; MOUSE ; hormone ; AGE ; MUTATION ; LINE ; DNA-BINDING ; PHENOTYPE ; NF-kappa B ; BONE-FORMATION ; CYTOKINE ; osteoblast ; development ; TECHNOLOGY ; BONE ; INHIBIT ; CELL BIOLOGY ; OSTEOBLASTS ; BONE FORMATION ; NF kappa B ; INDUCED OSTEOPOROSIS ; INTERLEUKIN-11 ; OSTEOCLAST
    Abstract: Development of osteoporosis severely complicates long-term glucocorticoid (GC) therapy. Using a Cre-transgenic mouse line, we now demonstrate that GCs are unable to repress bone formation in the absence of glucocorticoid receptor (GR) expression in osteoblasts as they become refractory to hormone-induced apoptosis, inhibition of proliferation, and differentiation. In contrast, GC treatment still reduces bone formation in mice carrying a mutation that only disrupts GR dimerization, resulting in bone loss in vivo, enhanced apoptosis, and suppressed differentiation in vitro. The inhibitory GC effects on osteoblasts can be explained by a mechanism involving suppression of cytokines, such as interleukin 11, via interaction of the monomeric GR with AP-1, but not NF-kappa B. Thus, GCs inhibit cytokines independent of GR dimerization and thereby attenuate osteoblast differentiation, which accounts, in part, for bone loss during GC therapy
    Type of Publication: Journal article published
    PubMed ID: 20519123
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...