Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: DISEASES ; GENE ; PROTEIN ; IDENTIFICATION ; FAMILIES ; keratins ; LOCUS ; EPIDERMOLYTIC HYPERKERATOSIS
    Abstract: Punctate palmoplantar keratodermas (PPKPs) are rare autosomal-dominant inherited skin diseases that are characterized by multiple hyperkeratotic plaques distributed on the palms and soles. To date, two different loci in chromosomal regions 15q22-15q24 and 8q24.13-8q24.21 have been reported. Pathogenic mutations, however, have yet to be identified. In order to elucidate the genetic cause of PPKP type Buschke-Fischer-Brauer (PPKP1), we performed exome sequencing in five affected individuals from three families, and we identified in chromosomal region 15q22.33-q23 two heterozygous nonsense mutations-c.370C〉T (p.Arg124( *)) and c.481C〉T (p.Arg161( *))-in AAGAB in all affected individuals. Using immunoblot analysis, we showed that both mutations result in premature termination of translation and truncated protein products. Analyses of mRNA of affected individuals revealed that the disease allele is either not detectable or only detectable at low levels. To assess the consequences of the mutations in skin, we performed immunofluorescence analyses. Notably, the amount of granular staining in the keratinocytes of affected individuals was lower in the cytoplasm but higher around the nucleus than it was in the keratinocytes of control individuals. AAGAB encodes the alpha-and gamma-adaptin-binding protein p34 and might play a role in membrane traffic as a chaperone. The identification of mutations, along with the results from additional studies, defines the genetic basis of PPKP1 and provides evidence that AAGAB plays an important role in skin integrity.
    Type of Publication: Journal article published
    PubMed ID: 23000146
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: BACKGROUND & AIMS: Hepatoblastoma (HB) is the most common childhood liver cancer and occasionally presents with histological and clinical features reminiscent of hepatocellular carcinoma (HCC). Identification of molecular mechanisms that drive the neoplastic continuation towards more aggressive HCC phenotypes may help to guide the new stage of targeted therapies. METHODS: We performed comprehensive studies on genetic and chromosomal alterations as well as candidate gene function and their clinical relevance. RESULTS: Whole-exome sequencing identified HB as the genetically most simple tumor ever described (2.9 mutations per tumor) with recurrent mutations in CTNNB1 (12/15 cases) and NFE2L2 (2/15 cases). Their HCC-like progenies share the common CTNNB1 mutation, but additionally exhibit a significantly increased mutation number and chromosomal instability due to deletions of the genome guardians RAD17 and TP53, accompanied by TERT promoter mutations. Targeted genotyping of 33 primary tumors and cell lines revealed CTNNB1, NFE2L2, and TERT mutations in 72.5%, 9.8%, and 5.9% of cases, respectively. All NFE2L2 mutations affected residues of the NFE2L2 protein that are recognized by the KEAP1/CUL3 complex for proteasomal degradation. Consequently, cells transfected with mutant NFE2L2 were insensitive to KEAP1-mediated downregulation of NFE2L2 signaling. Clinically, overexpression of the NFE2L2 target gene NQO1 in tumors was significantly associated with metastasis, vascular invasion, the adverse prognostic C2 gene signature, as well as poor outcome. CONCLUSIONS: Our study demonstrates the importance of CTNNB1 mutations and NFE2L2-KEAP1 pathway activation in HB development and defines loss of genomic stability and TERT promoter mutations as prominent characteristics of aggressive HB with HCC features.
    Type of Publication: Journal article published
    PubMed ID: 25135868
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.
    Type of Publication: Journal article published
    PubMed ID: 28120103
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...