Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 1615-6102
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary It had been shown earlier, that RNA polymerase 13 S particles contain the large components with a molecular weight of about 3–105 and small subunits with a molecular weight of 4·104-1·105. These polymerase components easily dissociate and reassociate with restoration of the enzyme activity. Both temperature-sensitive (tsX) and rifamycin-resistant (rif-r-I) mutations proved to affect the large polymerase component without changing the small subunits. These mutations were mapped at different, though closely linked, loci of metB-thi region of E. coli K12 chromosome. These results as well as certain literature data allow to conclude that the large RNA polymerase component consists of at least two polypeptides, one being altered by ts mutation, and the other—by rif-r mutation. The large polymerase component when separated from the small subunits retain the ability to bind to T2 phage DNA while the separate small subunits lack this property. Rifamycin does not affect RNA polymerase-T2 DNA binding while ts mutation leads to inability of the enzyme to form stable complexes with DNA. Therefore, it is likely that the polypeptide affected by ts mutation is responsible for the attachment of RNA polymerase to specific sites of DNA template. On the other hand, the small subunits as well as polypeptide of the large component, which determines RNA polymerase sensitivity to rifamycin, seem not to participate in the enzyme binding to DNA template. It is suggested, that the catalytic site of RNA polymerase is located in the large component and formed by rifamycin-binding polypeptide. The small subunits are supposed to have regulatory function and activate the large components.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6830
    Keywords: homocarnosine ; carnosine ; anserine ; brain ; ischemia ; Na, K-ATPase ; tyrosine hydroxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Carnosine, anserine, and homocarnosine are endogenous dipeptides concentrated in brain and muscle whose biological functions remain in doubt. 2. We have tested the hypothesis that these compounds function as endogenous protective substances against molecular and cellular damage from free radicals, using two isolated enzyme systems and two models of ischemic brain injury. Carnosine and homocarnosine are both effective in activating brain Na, K-ATPase measured under optimal conditions and in reducing the loss of its activity caused by incubation with hydrogen peroxide. 3. In contrast, all three endogenous dipeptides cause a reduction in the activity of brain tyrosine hydroxylase, an enzyme activated by free radicals. In hippocampal brain slices subjected to ischemia, carnosine increased the time to loss of excitability. 4. In in vivo experiments on rats under experimental hypobaric hypoxia, carnosine increased the time to loss of ability to stand and breath and decreased the time to recovery. 5. These actions are explicable by effects of carnosine and related compounds which neutralize free radicals, particularly hydroxyl radicals. In all experiments the effective concentration of carnosine was comparable to or lower than those found in brain. These observations provide further support for the conclusion that protection against free radical damage is a major role of carnosine, anserine, and homocarnosine.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...