Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-14
    Description: Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (〈1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deardorff, Matthew A -- Bando, Masashige -- Nakato, Ryuichiro -- Watrin, Erwan -- Itoh, Takehiko -- Minamino, Masashi -- Saitoh, Katsuya -- Komata, Makiko -- Katou, Yuki -- Clark, Dinah -- Cole, Kathryn E -- De Baere, Elfride -- Decroos, Christophe -- Di Donato, Nataliya -- Ernst, Sarah -- Francey, Lauren J -- Gyftodimou, Yolanda -- Hirashima, Kyotaro -- Hullings, Melanie -- Ishikawa, Yuuichi -- Jaulin, Christian -- Kaur, Maninder -- Kiyono, Tohru -- Lombardi, Patrick M -- Magnaghi-Jaulin, Laura -- Mortier, Geert R -- Nozaki, Naohito -- Petersen, Michael B -- Seimiya, Hiroyuki -- Siu, Victoria M -- Suzuki, Yutaka -- Takagaki, Kentaro -- Wilde, Jonathan J -- Willems, Patrick J -- Prigent, Claude -- Gillessen-Kaesbach, Gabriele -- Christianson, David W -- Kaiser, Frank J -- Jackson, Laird G -- Hirota, Toru -- Krantz, Ian D -- Shirahige, Katsuhiko -- GM49758/GM/NIGMS NIH HHS/ -- K08 HD055488/HD/NICHD NIH HHS/ -- K08HD055488/HD/NICHD NIH HHS/ -- P01 HD052860/HD/NICHD NIH HHS/ -- R01 GM049758/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Sep 13;489(7415):313-7. doi: 10.1038/nature11316.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Pennsylvania 19104, USA. deardorff@email.chop.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22885700" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Adaptor Proteins, Signal Transducing/metabolism ; Anaphase ; Binding Sites ; Cell Cycle Proteins/chemistry/*metabolism ; Chondroitin Sulfate Proteoglycans/chemistry/metabolism ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Crystallography, X-Ray ; De Lange Syndrome/*genetics/*metabolism ; Female ; Fibroblasts ; HeLa Cells ; Histone Deacetylases/chemistry/deficiency/*genetics/metabolism ; Humans ; Male ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/*genetics ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; Prophase ; Protein Conformation ; Proteins/genetics ; Repressor Proteins/chemistry/deficiency/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-17
    Description: Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirota, Tsuyoshi -- Lee, Jae Wook -- St John, Peter C -- Sawa, Mariko -- Iwaisako, Keiko -- Noguchi, Takako -- Pongsawakul, Pagkapol Y -- Sonntag, Tim -- Welsh, David K -- Brenner, David A -- Doyle, Francis J 3rd -- Schultz, Peter G -- Kay, Steve A -- GM074868/GM/NIGMS NIH HHS/ -- GM085764/GM/NIGMS NIH HHS/ -- GM096873/GM/NIGMS NIH HHS/ -- MH051573/MH/NIMH NIH HHS/ -- MH082945/MH/NIMH NIH HHS/ -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM041804/GM/NIGMS NIH HHS/ -- R01 GM074868/GM/NIGMS NIH HHS/ -- R01 GM096873/GM/NIGMS NIH HHS/ -- R01 MH051573/MH/NIMH NIH HHS/ -- R01 MH082945/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1094-7. doi: 10.1126/science.1223710. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798407" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Carbazoles/chemistry/isolation & purification/*pharmacology ; Cell Line, Tumor ; Circadian Clocks/*drug effects ; Cryptochromes/*agonists/metabolism ; Gluconeogenesis/drug effects/genetics ; Glucose-6-Phosphatase/genetics ; HEK293 Cells ; Hepatocytes/drug effects/metabolism ; Humans ; Liver/cytology/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; Protein Stability/drug effects ; Proteolysis/drug effects ; *Small Molecule Libraries ; Sulfonamides/chemistry/isolation & purification/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-14
    Description: IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 +/- 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakai, Nami -- Sakai, Takeshi -- Hirota, Tomoya -- Watanabe, Yoshimasa -- Ceccarelli, Cecilia -- Kahane, Claudine -- Bottinelli, Sandrine -- Caux, Emmanuel -- Demyk, Karine -- Vastel, Charlotte -- Coutens, Audrey -- Taquet, Vianney -- Ohashi, Nagayoshi -- Takakuwa, Shigehisa -- Yen, Hsi-Wei -- Aikawa, Yuri -- Yamamoto, Satoshi -- England -- Nature. 2014 Mar 6;507(7490):78-80. doi: 10.1038/nature13000. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Communication Engineering and Informatics, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan. ; National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan. ; Institut de Planetologie et d'Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France. ; 1] Universite de Toulouse, Universite Paul Sabatier, Observatoire Midi-Pyrenees (UPS-OMP), Institut de Recherche en Astrophysique et Planetologie (IRAP), Toulouse, France [2] Centre National de la Recherche Scientifique (CNRS), IRAP, 9 Avenue Colonel Roche, BP 44346, Toulouse 31028 Cedex 4, France. ; 1] Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen 2100 Osterbro, Denmark [2] Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, Copenhagen 1350 K, Denmark. ; National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), Astrochemistry Laboratory, Mail Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA. ; 1] Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan [2] Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, Hawaii 96720, USA. ; Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan. ; 1] Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan [2] Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan. ; Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522533" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0304-4165
    Keywords: (Suckling rat) ; Development ; Dexamethasone ; Enzyme induction ; Glucocorticoid receptor ; Tryptophan dioxygenase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0304-4165
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0888-7543
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0378-4347
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary We investigated the localization of blood-group antigens A, B, and H in human labial salivary and submandibular glands by applying a postembedding immunogold method using monoclonal antibodies in combination with the streptavidin-biotin bridge technique. The H, A, and B antigens were only detected in mature secretory granules (SGs), which were mainly found in cells in the late phase of the maturation cycle. In immature SGs, which were present in cells in the early or middle phases of the maturation cycle, these antigens were not detected. All other cytoplasmic organelles were not labeled by the monoclonal antibodies used. In blood-group-O secretors, H antigen was present in almost all of the mature SGs. In blood-group-A secretors, the labelling for H antigen exhibited a mosaic-like pattern, i.e. only some of the mature SGs contained H antigen. With respect to the A and B antigens, a similar mosaic-like pattern of staining was observed in blood-group-A and-B secretors, respectively. To the best of our knowledge, this is the first time that the distribution of blood-group antigens A, B, and H in human tissues has been demonstrated at the electron-microscope-level using monoclonal antibodies.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Effects of α-galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4(GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. β-Galactosidase digestion following α-galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple β-galactosidase digestion as well as sequential digestion with α- and β-galactosidase. However, when α-l-fucosidase digestion procedure was inserted between α- and β-galactosidase digestion, UEA-I staining imparted by α-galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with α-galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion. These results confirmed that the β-galactosidase induced GSA-II reactivity and the fucosidase induced PNA reactivity are due to precursors of different kinds of blood-group determinants and suggest that at least two kinds of B antigen determinants, i.e. Gal(α1-3)[Fuc(α1-2)]Gal(β1-3,4)GlcNac and Gal(α1-3)-[Fuc(α1-2)]Gal(β1-3)GalNAc are produced in GSAI-B4 positive acinar cells. The synthesis of the latter type of B antigen is assumed to be controlled under the secretory gene in human pancreas.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...