Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-03
    Description: Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that 'read' the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1-ETO resides in and functions through a stable AML1-ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Xiao-Jian -- Wang, Zhanxin -- Wang, Lan -- Jiang, Yanwen -- Kost, Nils -- Soong, T David -- Chen, Wei-Yi -- Tang, Zhanyun -- Nakadai, Tomoyoshi -- Elemento, Olivier -- Fischle, Wolfgang -- Melnick, Ari -- Patel, Dinshaw J -- Nimer, Stephen D -- Roeder, Robert G -- CA113872/CA/NCI NIH HHS/ -- CA129325/CA/NCI NIH HHS/ -- CA163086/CA/NCI NIH HHS/ -- CA166835/CA/NCI NIH HHS/ -- R01 CA163086/CA/NCI NIH HHS/ -- R01 CA166835/CA/NCI NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- UL1RR024143/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):93-7. doi: 10.1038/nature12287. Epub 2013 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812588" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line, Tumor ; *Cell Transformation, Neoplastic/genetics ; Core Binding Factor Alpha 2 Subunit/chemistry/*metabolism ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Humans ; Leukemia, Myeloid, Acute/genetics/*metabolism/*pathology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/*metabolism ; Oncogene Proteins, Fusion/chemistry/*metabolism ; Point Mutation ; Protein Binding ; Protein Multimerization ; Protein Stability ; Protein Structure, Tertiary ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-15
    Description: Release of promoter-proximal paused RNA polymerase II (Pol II) during early elongation is a critical step in transcriptional regulation in metazoan cells. Paused Pol II release is thought to require the kinase activity of cyclin-dependent kinase 9 (CDK9) for the phosphorylation of DRB sensitivity-inducing factor, negative elongation factor, and C-terminal domain (CTD) serine-2 of Pol II. We found that Pol II-associated factor 1 (PAF1) is a critical regulator of paused Pol II release, that positive transcription elongation factor b (P-TEFb) directly regulates the initial recruitment of PAF1 complex (PAF1C) to genes, and that the subsequent recruitment of CDK12 is dependent on PAF1C. These findings reveal cooperativity among P-TEFb, PAF1C, and CDK12 in pausing release and Pol II CTD phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Ming -- Yang, Wenjing -- Ni, Ting -- Tang, Zhanyun -- Nakadai, Tomoyoshi -- Zhu, Jun -- Roeder, Robert G -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1383-6. doi: 10.1126/science.aad2338.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. ; Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA. ; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China. ; Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. roeder@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659056" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cyclin-Dependent Kinase 9/metabolism ; Cyclin-Dependent Kinases/metabolism ; *Gene Expression Regulation ; Humans ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Positive Transcriptional Elongation Factor B/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/genetics/*metabolism ; *Transcription Elongation, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Fermentation Technology 66 (1988), S. 535-544 
    ISSN: 0385-6380
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Fermentation Technology 66 (1988), S. 525-533 
    ISSN: 0385-6380
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...