Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-23
    Description: The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moroz, Leonid L -- Kocot, Kevin M -- Citarella, Mathew R -- Dosung, Sohn -- Norekian, Tigran P -- Povolotskaya, Inna S -- Grigorenko, Anastasia P -- Dailey, Christopher -- Berezikov, Eugene -- Buckley, Katherine M -- Ptitsyn, Andrey -- Reshetov, Denis -- Mukherjee, Krishanu -- Moroz, Tatiana P -- Bobkova, Yelena -- Yu, Fahong -- Kapitonov, Vladimir V -- Jurka, Jerzy -- Bobkov, Yuri V -- Swore, Joshua J -- Girardo, David O -- Fodor, Alexander -- Gusev, Fedor -- Sanford, Rachel -- Bruders, Rebecca -- Kittler, Ellen -- Mills, Claudia E -- Rast, Jonathan P -- Derelle, Romain -- Solovyev, Victor V -- Kondrashov, Fyodor A -- Swalla, Billie J -- Sweedler, Jonathan V -- Rogaev, Evgeny I -- Halanych, Kenneth M -- Kohn, Andrea B -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1S10RR027052/RR/NCRR NIH HHS/ -- 55007424/Howard Hughes Medical Institute/ -- 5R21DA030118/DA/NIDA NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R01 AG029360/AG/NIA NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 MH097062/MH/NIMH NIH HHS/ -- R01MH097062/MH/NIMH NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21RR025699/RR/NCRR NIH HHS/ -- S10 RR027052/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):109-14. doi: 10.1038/nature13400. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA [3] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. ; The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA. ; 1] The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, Florida 32080, USA [2] Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA. ; European Research Institute for the Biology of Ageing, University of Groningen Medical Center, Antonius Deusinglaan 1, Building 3226, Room 03.34, 9713 AV Groningen, The Netherlands. ; Department of Medical Biophysics and Department of Immunology, University of Toronto, Sunnybrook Research Institute 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. ; Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia. ; Department of Neuroscience & McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, USA. ; Genetic Information Research Institute, 1925 Landings Dr., Mountain View, California 94043, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, 222 Maple Avenue, Shrewsbury, Massachusetts 01545, USA. ; Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA. ; Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. ; 1] Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain. ; 1] Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA [2] Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Gubkina 3, Moscow 119991, Russia [3] Center for Brain Neurobiology and Neurogenetics and Institute of Cytology and Genetics, RAS, Lavrentyev Avenue, 10, Novosibirsk 630090, Russia [4] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, 119991 Moscow, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ctenophora/classification/*genetics/immunology/physiology ; *Evolution, Molecular ; Genes, Developmental ; Genes, Homeobox ; Genome/*genetics ; Mesoderm/metabolism ; Metabolomics ; MicroRNAs ; Molecular Sequence Data ; Muscles/physiology ; *Nervous System/metabolism ; Neurons/metabolism ; Neurotransmitter Agents ; Phylogeny ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1351
    Keywords: Mollusc ; Feeding ; Cerebral motoneurons ; Electrical coupling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The pteropod mollusc Clione limacina feeds on shelled pteropods capturing them with 3 pairs of oral appendages, called buccal cones. A group of electricallycoupled putative motoneurons (A neurons) has been identified in the cerebral ganglia, whose activation induces opening of the oral skin folds and extrusion of the buccal cones. These cells are normally silent and have one or two axons in the ipsilateral head nerves. Electrical coupling between A neurons is relatively weak and normally does not produce 1∶1 spike synchronization. Coupling coefficients ranged from 0.05 to 0.25. A second type of putative motoneurons (B neurons) controls retraction and withdrawal of buccal cones. B neurons show spontaneous spike activity which maintains the buccal cones in a continuous retracted state. All B neurons have one axon running into the head nerves. Ipsilateral B motoneurons are electrically coupled to each other. A neurons strongly inhibit B neurons, however, seven identified A motoneurons which were specifically tested do not form monosynaptic contacts with B motoneurons. Appropriate stimuli from the prey activate A motoneurons, which in turn inhibit B motoneurons and evoke extrusion of the buccal cones. One mechanism promoting the speed of this extremely rapid reaction is brief co-activation of antagonistic A and B neuron groups, which provides a notable increase in fluid pressure inside the head. Mechanical stimulation of buccal cones provides excitatory inputs to A motoneurons. Similar stimulation from captured prey would serve to prolong buccal cone protraction during the manipulatory phase of feeding.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1351
    Keywords: Mollusc ; Feeding ; Motoneurons ; Sensory inputs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The prey capture phase of feeding behavior in the pteropod mollusc Clione limacina consists of an explosive extrusion of buccal cones, specialized structures which are used to catch the prey, and acceleration of swimming with frequent turning and looping produced by tail bend. A system of neurons which control different components of prey capture behavior in Clione has been identified in the cerebral ganglia. Cerebral B and L neurons produce retraction of buccal cones and tightening of the lips over them — their spontaneous spike activities maintain buccal cones in the withdrawn position. Cerebral A neurons inhibit B and L cells and produce opening of the lips and extrusion of buccal cones. A pair of cerebral interneurons C-BM activates cerebral A neurons and synchronously initiates the feeding motor program in the buccal ganglia. Cerebral T neurons initiate acceleration of swimming and produce tail bending which underlies turning and looping during the prey capture. Both tactile and chemical inputs from the prey produce activation of cerebral A and T neurons. This reaction appears to be specific, since objects other than alive Limacina or Limacina juice do not initiate activities of A and T neurons.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1351
    Keywords: Mollusc ; Feeding ; Cerebral motoneurons ; Electrical coupling ; Afterdischarges
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The pteropod mollusc Clione limacina is a highly specialized carnivore which feeds on shelled pteropods and uses, for their capture, three pairs of oral appendages, called buccal cones. Contact with the prey induces rapid eversion of buccal cones, which then become tentacle-like and grasp the shell of the prey. In the previous paper, a large group of electrically coupled, normally silent cells (A motoneurons) has been described in the cerebral ganglia of Clione. Activation of A neurons induces opening of oral skin folds and extrusion of the buccal cones. The present study continues the analysis of the electrical properties of A motoneurons. Brief intracellular stimulation of an A neuron can produce prolonged firing (afterdischarge), lasting up to 40 s, in the entire population of A neurons. Afterdischarge activity is based on an afterdepolarization evoked by an initial strong burst of A neuron spikes. The data suggest that this afterdepolarization represents excitatory synaptic input from unidentified neurons which in turn receive excitatory inputs from A neurons, thus organizing positive feedback. The main functional role of this positive feedback is the spread and synchronization of spike activity among all A neurons in the population. In addition, it serves to transform a brief excitatory input to A neurons into their prolonged and stable firing, which is required during certain phases of feeding behavior in Clione.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1351
    Keywords: Key words Heart control ; Cardioexcitatory neuron ; Serotonin ; Peptide ; Mollusc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A group of four cardioexcitatory neurons has been identified in the intestinal ganglia of the mollusc Clione limacina. Relatively weak stimulation of the intestinal neurons induced auricle contractions only, while strong stimulation produced initial auricle contractions followed by full-cycle auricle-ventricle contractions. Intestinal cardioexcitatory neurons probably utilized as their transmitter a peptide similar to Tritonia pedal peptide – they showed pedal peptide-like immunoreactivity, and their effects were mimicked by application of the exogenous pedal peptide. The pedal cardioexcitatory neuron was found to produce strong excitatory effects only on the ventricle contractions. Its stimulation induced ventricle contractions in the quiescent heart or significantly accelerated the rate of ventricle contractions in the rhythmically active heart. The pedal cardioexcitatory neuron apparently utilized serotonin as a neurotransmitter, based upon serotonin immunoreactivity, blocking effect of serotonin antagonists mianserin and methysergide, and the observation that exogenous serotonin mimicked its effect. A dense network of pedal peptide-like immunoreactivity was found both in the auricle and ventricle tissue. Serotonin immunoreactivity was densely present in the ventricle, while the auricle contained only a separate serotonin-immunoreactive unbranched axon. Thus, there are two separate groups of central cardioexcitatory neurons with different effects on heart activity, which together might provide a complex cardio-regulatory function in Clione.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...