Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-24
    Description: The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Tae-Wook -- Lee, Kitack -- Najjar, Raymond G -- Jeong, Hee-Dong -- Jeong, Hae Jin -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):505-9. doi: 10.1126/science.1206583. Epub 2011 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940860" target="_blank"〉PubMed〈/a〉
    Keywords: *Air Pollutants ; Atmosphere/*chemistry ; Ecosystem ; Nitrates/*analysis ; Nitrogen/*analysis ; Pacific Ocean ; Phosphorus/analysis ; Seawater/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-07
    Description: Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Tae-Wuk -- Michniewicz, Marta -- Bergmann, Dominique C -- Wang, Zhi-Yong -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01 GM066258-09/GM/NIGMS NIH HHS/ -- R01 GM086632/GM/NIGMS NIH HHS/ -- R01GM066258/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 5;482(7385):419-22. doi: 10.1038/nature10794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305-4150, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22307275" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*drug effects/*enzymology/genetics/growth & development ; Arabidopsis Proteins/antagonists & inhibitors/genetics/*metabolism ; Brassinosteroids/*pharmacology ; Glycogen Synthase Kinase 3/antagonists & inhibitors/genetics/*metabolism ; MAP Kinase Kinase Kinases/metabolism ; MAP Kinase Signaling System/*drug effects ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Phosphorylation/drug effects ; Plant Stomata/*drug effects/enzymology/genetics/*growth & development ; Plants, Genetically Modified ; Protein Kinases/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Receptors, Cell Surface/genetics/metabolism ; Tobacco
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-29
    Description: The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Chi Hoon -- Lee, So Young -- Hwang, Doo Sung -- Shin, Dong Won -- Cho, Doo Hee -- Lee, Kang Hyuck -- Kim, Tae-Woo -- Kim, Tae-Wuk -- Lee, Mokwon -- Kim, Deok-Soo -- Doherty, Cara M -- Thornton, Aaron W -- Hill, Anita J -- Guiver, Michael D -- Lee, Young Moo -- England -- Nature. 2016 Apr 28;532(7600):480-3. doi: 10.1038/nature17634.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy Engineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea. ; Department of Life Science, College of Natural Science, Hanyang University, Seoul 133-791, South Korea. ; School of Mechanical Engineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea. ; Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia. ; State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China. ; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27121841" target="_blank"〉PubMed〈/a〉
    Keywords: Biomimetic Materials/chemistry ; Biomimetics ; Cactaceae/metabolism ; Desiccation ; Dialysis ; Electrochemistry ; Humidity ; Hydrophobic and Hydrophilic Interactions ; *Membranes, Artificial ; *Nanotechnology ; Plant Stomata/metabolism ; Polymers/*chemistry ; Protons ; Surface Properties ; Temperature ; Water/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-15
    Description: Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉She, Ji -- Han, Zhifu -- Kim, Tae-Wuk -- Wang, Jinjing -- Cheng, Wei -- Chang, Junbiao -- Shi, Shuai -- Wang, Jiawei -- Yang, Maojun -- Wang, Zhi-Yong -- Chai, Jijie -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01GM066258/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jun 12;474(7352):472-6. doi: 10.1038/nature10178.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory for Protein Sciences of Ministry of Education School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21666666" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*chemistry/*metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Brassinosteroids ; Cholestanols/chemistry/*metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Binding ; Protein Folding ; Protein Kinases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Steroids, Heterocyclic/chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-20
    Description: The making and breaking of atomic bonds are essential processes in chemical reactions. Although the ultrafast dynamics of bond breaking have been studied intensively using time-resolved techniques, it is very difficult to study the structural dynamics of bond making, mainly because of its bimolecular nature. It is especially difficult to initiate and follow diffusion-limited bond formation in solution with ultrahigh time resolution. Here we use femtosecond time-resolved X-ray solution scattering to visualize the formation of a gold trimer complex, [Au(CN)2(-)]3 in real time without the limitation imposed by slow diffusion. This photoexcited gold trimer, which has weakly bound gold atoms in the ground state, undergoes a sequence of structural changes, and our experiments probe the dynamics of individual reaction steps, including covalent bond formation, the bent-to-linear transition, bond contraction and tetramer formation with a time resolution of approximately 500 femtoseconds. We also determined the three-dimensional structures of reaction intermediates with sub-angstrom spatial resolution. This work demonstrates that it is possible to track in detail and in real time the structural changes that occur during a chemical reaction in solution using X-ray free-electron lasers and advanced analysis of time-resolved solution scattering data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kyung Hwan -- Kim, Jong Goo -- Nozawa, Shunsuke -- Sato, Tokushi -- Oang, Key Young -- Kim, Tae Wu -- Ki, Hosung -- Jo, Junbeom -- Park, Sungjun -- Song, Changyong -- Sato, Takahiro -- Ogawa, Kanade -- Togashi, Tadashi -- Tono, Kensuke -- Yabashi, Makina -- Ishikawa, Tetsuya -- Kim, Joonghan -- Ryoo, Ryong -- Kim, Jeongho -- Ihee, Hyotcherl -- Adachi, Shin-ichi -- England -- Nature. 2015 Feb 19;518(7539):385-9. doi: 10.1038/nature14163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea [2] Department of Chemistry, KAIST, Daejeon 305-701, South Korea. ; Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan. ; RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan. ; Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan. ; Department of Chemistry, The Catholic University of Korea, Bucheon 420-743, South Korea. ; Department of Chemistry, Inha University, Incheon 402-751, South Korea. ; 1] Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan [2] Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693570" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-15
    Description: Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Tae Woo -- Choi, Kyoung-Shin -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):990-4. doi: 10.1126/science.1246913. Epub 2014 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24526312" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-29
    Description: The paucity of enzymes that efficiently deconstruct plant polysaccharides represents a major bottleneck for industrial-scale conversion of cellulosic biomass into biofuels. Cow rumen microbes specialize in degradation of cellulosic plant material, but most members of this complex community resist cultivation. To characterize biomass-degrading genes and genomes, we sequenced and analyzed 268 gigabases of metagenomic DNA from microbes adherent to plant fiber incubated in cow rumen. From these data, we identified 27,755 putative carbohydrate-active genes and expressed 90 candidate proteins, of which 57% were enzymatically active against cellulosic substrates. We also assembled 15 uncultured microbial genomes, which were validated by complementary methods including single-cell genome sequencing. These data sets provide a substantially expanded catalog of genes and genomes participating in the deconstruction of cellulosic biomass.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hess, Matthias -- Sczyrba, Alexander -- Egan, Rob -- Kim, Tae-Wan -- Chokhawala, Harshal -- Schroth, Gary -- Luo, Shujun -- Clark, Douglas S -- Chen, Feng -- Zhang, Tao -- Mackie, Roderick I -- Pennacchio, Len A -- Tringe, Susannah G -- Visel, Axel -- Woyke, Tanja -- Wang, Zhong -- Rubin, Edward M -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):463-7. doi: 10.1126/science.1200387.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteria/enzymology/*genetics/isolation & purification/metabolism ; Bacterial Proteins/chemistry/genetics/metabolism ; *Biomass ; Carbohydrate Metabolism ; Cattle/*microbiology ; Cellulase/genetics/metabolism ; Cellulases/chemistry/*genetics/metabolism ; Cellulose/*metabolism ; Cellulose 1,4-beta-Cellobiosidase/genetics/metabolism ; Genes, Bacterial ; Genome, Bacterial ; *Metagenome ; Metagenomics/methods ; Molecular Sequence Annotation ; Molecular Sequence Data ; Poaceae/microbiology ; Rumen/metabolism/*microbiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-29
    Description: The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Il-Nam -- Lee, Kitack -- Gruber, Nicolas -- Karl, David M -- Bullister, John L -- Yang, Simon -- Kim, Tae-Wook -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1102-6. doi: 10.1126/science.1258396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Sciences and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea. ; School of Environmental Sciences and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea. ktl@postech.ac.kr. ; Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland. ; Daniel K. Inouye Center for Microbial Oceanography, University of Hawaii at Manoa, 1950 East West Road, Honolulu, HI 96822, USA. ; Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA 98115, USA. ; Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744, Republic of Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430767" target="_blank"〉PubMed〈/a〉
    Keywords: Asia ; Humans ; Nitrates/*analysis ; Nitrogen/*analysis ; Pacific Ocean ; Phosphates/analysis ; Seawater/*chemistry ; Water Pollutants, Chemical/*analysis ; *Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 487-489 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Atomic force microscopy (AFM) and photoluminescence (PL) measurements were carried out to investigate the coalescence and electron activation energy in CdTe/ZnTe nanostructures. The results of the AFM images show that uniform CdTe quantum dots (QDs) are formed and that the transformation from CdTe QDs to CdTe quantum wires is caused by the coalescence. The excitonic peaks corresponding to the transition from the ground electronic subband to the ground heavy-hole band in the CdTe/ZnTe QDs shifted to higher energy in comparison with those of the CdTe/ZnTe quantum wires. The activation energy of the electrons confined in the CdTe QDs, as obtained from the temperature-dependent PL spectra, was higher than those in CdTe quantum wells and quantum wires. The present results can help to improve the understanding of coalescence and electron activation energy in CdTe/ZnTe nanostructures. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A Ga+ focused ion-beam (FIB) technique utilizing both lithographic and nanoparticle formation processes has been introduced to create nanocrystals acting as Coulomb islands at room temperature. High-resolution transmission electron microscopy results show that the nanocrystals acting as Coulomb islands are created in the source-drain active layer by using a Ga+ FIB. The results for the drain current and the conductance as functions of the drain voltage with an open gate voltage at room temperature show a Coulomb staircase and conductance oscillations, respectively. Nanoscale particles of Al with an amorphous phase are created in the source-drain channel by the defects due to the radiation effect of the Ga+ FIB, and collisions between Ga+ ions and Al atoms produce secondary electrons, that interact with the nanoparticles, which are acting as Coulomb islands, to form the crystal phase. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...