Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; CELLS ; SURVIVAL ; OVARIAN-CANCER ; T-LYMPHOCYTES ; CUTANEOUS MELANOMA ; GENE-THERAPY ; COLONY-STIMULATING FACTOR ; ANTITUMOR ; CHEMOTHERAPY-REFRACTORY CANCER
    Abstract: Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.
    Type of Publication: Journal article published
    PubMed ID: 25821063
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: The immunosuppressive microenvironment of solid tumors renders adoptively transferred T cells hypofunctional. However, adenoviral delivery of immunostimulatory cytokines IL2 and TNFalpha can significantly improve the efficacy of adoptive T-cell therapy. Using ret transgenic mice that spontaneously develop skin malignant melanoma, we analyzed the mechanism of action of adenoviruses coding for IL2 and TNFalpha in combination with adoptive transfer of TCR-transgenic TRP-2-specific T cells. Following T-cell therapy and intratumoral virus injection, a significant increase in antigen-experienced, tumor-reactive PD-1 CD8 T cells was seen in both cutaneous lesions and in metastatic lymph nodes. A reverse correlation between tumor weight and the number of tumor-reactive PD-1 tumor-infiltrating lymphocytes (TILs) was observed, suggesting that these T cells could target and kill tumor cells. It is interesting to note that, local expression of cytokines did not affect intratumoral levels of T-regulatory cells (Tregs), which had previously been associated with systemic IL2 therapy. Instead, Ad5-IL2 induced upregulation of IL2 receptor alpha-chain (CD25) on conventional CD4CD25Foxp3 cells, indicating that these CD4 T cells may contribute to CD8 T-cell activation and/or homing. Signs of therapy-induced resistance were also observed as the expression of PD-L1 on tumor-infiltrating granulocytic myeloid-derived suppressor cells was upregulated as a reaction to PD-1+ TILs. Finally, beneficial ratios between tumor-reactive PD-1 CD8 TILs and immunosuppressive cell subsets (Tregs and nitric oxide-producing myeloid-derived suppressor cells) were observed in primary and secondary tumor sites, indicating that local delivery of IL2 and TNFalpha coding adenoviruses can systemically modify the cellular composition of the tumor microenvironment in favor of adoptively transferred T cells.
    Type of Publication: Journal article published
    PubMed ID: 27741089
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...