Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: S. cerevisiae ; Lysine biosynthesis ; LYS5 gene ; Subclone ; Enzyme activity ; S1 analysis ; DNA homology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The LYS5 and LYS2 genes of Saccharomyces cerevisiae are required for the synthesis of α-aminoadipate reductase in the lysine pathway. The LYS5 gene, originally cloned as a DNA insert of the plasmid pSC5, has been subcloned on a 3.2 kb SphI-Sau3AI DNA fragment of the recombinant plasmid pSR7. An internal 2.1 kb HpaI-HpaI DNA fragment of the subclone, upon Southern hybridization, exhibits homology with HpaI-restricted wild-type S. cerevisiae genomic DNA. The lys5 + transformants exhibited α-aminoadipate reductase activity similar to that of wild-type cells. S1 nuclease analysis localizes the transcription initiation site relative to the detailed restriction map, and reveals the direction of transcription, as well as the transcript size of the LYS5 gene which can be no greater than 1.65 kb. From this it is estimated that the encoded polypeptide is appreciably smaller than the 4 kb LYS2 gene product. These results provide a physical and biochemical characterization of the cloned LYS5 gene. Based on these observations, it is concluded that the LYS5 gene encodes a relatively small polypeptide of the large heteropolymeric α-aminoadipate reductase.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract DNA reassociation kinetics have been partly elucidated for the higher crabs C. borealis and L. emarginata, using calf thymus DNA as a standard. These crabs contain no detectable repeated DNA in the approximate multiplicity frequency range 2–100 copies, which is unusual for invertebrate DNAs. Each species contains a component renaturing at an intermediate rate, and also a very rapidly renaturing fraction. The very rapidly renaturing fraction is considerably larger than the cesium chloride-resolvable satellites of each species. The fraction reassociating at an intermediate rate includes sequences with a reiteration frequency of up to 9.0×104 copies. This is unusually high for invertebrate DNAs. The nearly exact correlation between kinetic complexity and independently determined haploid genome size leads to the conclusion that the most slowly renaturing sequences of both crab species are present only once per haploid genome. Therefore the chromatids of these species are uninemic structures, and there has been no detectable occurrence of polyploid speciation in the recent evolutionary history of either species.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Plant mitochondria ; CoxI gene ; Group I intron ; Intronic ORF ; Horizontal gene transfer ; Evolutionary origin ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1432
    Keywords: Key words: Plant mitochondria —coxI gene — Group I intron — Intron mobility — Horizontal transfer — Pseudogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The Peperomia polybotrya coxI gene intron is the only currently reported group I intron in a vascular plant mitochondrial genome and it likely originated by horizontal transfer from a fungal donor. We provide a clearer picture of the horizontal transfer and a portrayal of the evolution of the group I intron since it was gained by the Peperomia mitochondrial genome. The intron was transferred recently in terms of plant evolution, being restricted to the single genus Peperomia among the order Piperales. Additional support is presented for the suggestion that a recombination/repair mechanism was used by the intron for integration into the Peperomia mitochondrial genome, as a perfect 1:1 correspondence exists between the intron's presence in a species and the presence of divergent nucleotide markers flanking the intron insertion site. Sequencing of coxI introns from additional Peperomia species revealed that several mutations have occurred in the intron since the horizontal transfer, but sequence alterations have not caused frameshifts or created stop codons in the intronic open reading frame. In addition, two coxI pseudogenes in Peperomia cubensis were discovered that lack a large region of coxI exon 2 and contain a truncated version of the group I intron that likely cannot be spliced out.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...