Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    German Medical Science; Düsseldorf, Köln
    In:  Physical activity and successful aging; Xth International EGREPA Conference; 20060914-20060916; Cologne; DOC06pasa092 /20061218/
    Publication Date: 2006-12-18
    Keywords: ddc: 610
    Language: English
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    German Medical Science; Düsseldorf, Köln
    In:  Physical activity and successful aging; Xth International EGREPA Conference; 20060914-20060916; Cologne; DOC06pasa098 /20061218/
    Publication Date: 2006-12-18
    Keywords: ddc: 610
    Language: English
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Key words Proprioception ; Multijoint movement ; Interjoint coordination ; Humans ; Tendon vibration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The present experiments addressed whether proprioception is used by the central nervous system (CNS) to control the spatial and temporal characteristics of unimanual circle drawing. Circle drawing is a multijoint movement, in which the muscles crossing the elbow and the shoulder are sequentially activated. The spatial and temporal characteristics of circle drawing depend on the precise coordination of these sequential activation patterns, and proprioception is ideally suited to support this coordination. Blindfolded human subjects produced a counterclockwise circular drawing motion (diameter = 16 cm) with the dominant arm at a repetition rate of 1/s. In some trials, 60–70 Hz vibration was applied to the tendons of the biceps brachii and/or the anterior deltoid. Spatial parameters measured from hand-movement data included the x- and y-axis diameters, circularity, and drift of the hand in the workspace. Vibration of either the biceps brachii or the anterior deltoid caused subjects to draw circles with decreased diameter, with changes in circularity, and with a systematic drift of the hand. These distortions to circle drawing by tendon vibration demonstrate that the CNS uses proprioceptive information to accomplish the spatial characteristics of this motor task. Simultaneous vibration of both muscles produced a drift that exceeded the individual vibration effects, which suggests that the CNS combined proprioceptive information related to elbow and shoulder rotation to control the movement of the hand. The temporal characteristics of circle drawing were quantified from joint angle data. While vibration did not significantly influence the relative phase between elbow and shoulder rotation, the variability of the phase relationship increased significantly, which suggests that proprioception contributes to phase stabilization. During circle drawing, elbow flexion-extension movements were produced with limited activation of the biceps. Nevertheless, biceps vibration distorted the circle metrics, suggesting that a muscle’s significance as a sensory transducer is independent of its activity level.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Key words Proprioception ; Interlimb coordination ; Humans ; Tendon vibration ; Bimanual coordination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Proprioception is used by the central nervous system (CNS) in the control of the spatial and temporal characteristics of single joint and multiple joint movement. The present study addressed the role of proprioception in the control of bilateral cyclical movements of the limbs. Normal blindfolded human subjects drew circles simultaneously and symmetrically with the two arms (16 cm diameter, 1 /s) upon two digitizing tablets. In selected trials, vibration (60–70 Hz) was applied to the tendon of the biceps and/or anterior deltoid muscles of the dominant arm to distort the proprioceptive information from muscle spindle afferents. One goal of this study was to identify whether tendon vibration influenced the spatial characteristics of circles drawn by the vibrated, dominant arm and the non-vibrated, non-dominant arm. A second goal was to determine the effect of vibration on the temporal coupling between the two arms during circle drawing. The results revealed that tendon vibration affected the spatial characteristics of circles drawn by the vibrated arm in a manner similar to that previously found for unilateral circle drawing. During bimanual circle drawing, vibration had only a minimal effect on the spatial characteristics of the non-vibrated, non-dominant arm. Temporal interlimb coupling was quantified by the relative phasing between the arms. Without tendon vibration, the dominant arm led the non-dominant arm. Vibration of the dominant arm increased the average phase lead. In a first control experiment, vibration of the non-dominant arm decreased the phase lead of the dominant arm, or even reversed it to a non-dominant arm phase lead. In a second control experiment, the subjects performed the bimanual circle-drawing task with vision of only the vibrated arm, in which case there was no spatial distortion of the circles drawn by the vibrated arm, but the phase relation between the two arms was still shifted as if vision were completely unavailable. It was concluded that, in bimanual movements such as these, the spatial and temporal characteristics of movement are controlled independently. Whereas the spatial characteristics of hand movement seem to be controlled unilaterally, the temporal characteristics of interlimb coupling appear to be controlled by proprioceptive information from both limbs, possibly by a proprioceptive triggering mechanism.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Key words Parkinson’s disease ; Motor learning ; Interlimb coordination ; Basal ganglia ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The basal ganglia have traditionally been associated with motor control functions and this view has prevailed since the late nineteenth century. Recent experimental studies suggest that this neuroanatomical system is also critically involved in motor learning. In the present study, motor learning/transfer capabilities were compared between patients with Parkinson’s disease and a group of normal elderly people. Subjects practiced a bimanual coordination task that required continuous flexion-extension movements in the transverse plane with a 90° phase offset between the forearms. During acquisition, augmented visual feedback of the relative motions was provided in real time. The findings revealed improvements in the bimanual coordination pattern across practice in both groups when the augmented concurrent feedback was present. However, when transferred to performance conditions in which the augmented information was withheld, performance deteriorated (relative to the augmented condition) and this effect was more prevalent in the Parkinson patients. More specifically, no improvement in interlimb coordination was observed under nonaugmented feedback conditions across practice. Instead, a drift toward the preferred in-phase and anti-phase coordination patterns was evident. The present findings suggest that Parkinson patients can improve their performance on a new motor task, but they remain strongly dependent on augmented visual information to guide these newly acquired movements. The apparent adoption of a closed-loop control mode is accompanied with decreases in movement speed in order to use the feedback to ensure accuracy. When the augmented feedback is withheld and the movement pattern is to be controlled by means of intrinsic information feedback sources, performance is severely hampered. The findings are hypothesized to indicate that learning/transfer is affected in Parkinson patients who apparently prefer some constancy in the environmental contingencies under which practice takes place. The present findings are consistent with the notion that the basal ganglia form a critical neuroanatomical substrate for motor learning.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Interlimb coordination ; Kinesthetic afferences ; Passive movement ; Relative phase ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The disruption of three patterns of two-limb coordination, involving cyclical flexion-extension movements performed in the same or in different directions, was investigated through application of passive movement to a third limb by the experimenter. The three patterns referred to the homologous, homolateral, and heterolateral (diagonal) limb combinations which were performed in the sagittal plane. The passive movement involved a spatiotemporal trajectory that differed from the movements controlled actively. Even though subjects were instructed to completely ignore the passive limb movement, the findings of experiment 1 demonstrated a moderate to severe destabilization of the two-limb patterns, as revealed by analyses of power spectra, relative phase, cycle duration, and amplitude. This disruption was more pronounced in the homolateral and heterolateral than in the homologous effector combinations, suggesting stronger coupling between homologous than nonhomologous limb pairs. Moreover, passive mobilization affected antiphase (nonisodirectional) movements more than inphase (isodirectional) movements, pointing to the differential stability of these patterns. Experiment 2 focused on homolateral coordination and demonstrated that withdrawal of visual information did not alter the effects induced by passive movement. It was therefore hypothesized that the generation of extra kinesthetic afferences through passive limb motion was primarily responsible for the detriment in interlimb coordination, possibly conflicting with the sensory information accompanying active movement production. In addition, it was demonstrated that the active limbs were more affected by their homologous passive counterpart than by their non-homologous counterpart, favoring the notion of “specific” interference. The findings are discussed in view of the potential role of kinesthetic afferences in human interlimb coordination, more specifically the preservance of relative phasing through a kinesthetic feedback loop.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Key words Multijoint movement control ; Elbow-wrist movement ; Interactive torques ; Coordination pattern
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The present paper focused on the role of mechanical factors arising from the multijoint structure of the musculoskeletal system and their use in the control of different patterns of cyclical elbow-wrist movements. Across five levels of cycling frequency (from 0.45 Hz up to 3.05 Hz), three movement patterns were analyzed: (1) unidirectional, including rotations at the elbow and wrist in the same direction; (2) bidirectional, with rotation at the joints in opposite directions, and (3) free-wrist pattern, which is characterized by alternating flexions and extensions at the elbow with the wrist relaxed. Angular position of both joints and electromyographic activity of biceps, triceps, the wrist flexor, and the wrist extensor were recorded. It was demonstrated that control at the elbow was principally different from control at the wrist. Elbow control in all three patterns was similar to that typically observed during single-joint movements: elbow accelerations-decelerations resulted from alternating activity of the elbow flexor and extensor and were largely independent of wrist motion at all frequency plateaus. The elbow muscles were responsible not only for the elbow movement, but also for the generation of interactive torques that played an important role in wrist control. There were two types of interactive torques exerted at the wrist: inertial torque arising from elbow motion and restraining torque arising from physical limits imposed on wrist rotation. These interactive torques were the primary source of wrist motion, whereas the main function of wrist-muscle activity was to intervene with the interactive effects and to adjust the wrist movement to comply with the required coordination pattern. The unidirectional pattern was more in agreement with interactive effects than the bidirectional pattern, thus causing their differential difficulty at moderate cycle frequencies. When cycling frequency was further increased, both the unidirectional and bidirectional movements lost their individual features and acquired features of the free-wrist pattern. The deterioration of the controlled patterns at high cycling frequencies suggests a crucial role for proprioceptive information in wrist control. These results are suppportive of a hierachical organization of control with respect to elbow-wrist coordination, during which the functions of control at the elbow and wrist are principally different: the elbow muscles generate movement of the whole linkage and the wrist muscles produce corrections of the movement necessary to fulfill the task.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...