Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-12
    Description: In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yubo -- Wong, Chee-Hong -- Birnbaum, Ramon Y -- Li, Guoliang -- Favaro, Rebecca -- Ngan, Chew Yee -- Lim, Joanne -- Tai, Eunice -- Poh, Huay Mei -- Wong, Eleanor -- Mulawadi, Fabianus Hendriyan -- Sung, Wing-Kin -- Nicolis, Silvia -- Ahituv, Nadav -- Ruan, Yijun -- Wei, Chia-Lin -- 1U54HG004557-01/HG/NHGRI NIH HHS/ -- GGP12152/Telethon/Italy -- GM61390/GM/NIGMS NIH HHS/ -- R01 DK090382/DK/NIDDK NIH HHS/ -- R01 HD059862/HD/NICHD NIH HHS/ -- R01 HG004456-01/HG/NHGRI NIH HHS/ -- R01 NS079231/NS/NINDS NIH HHS/ -- R01DK090382/DK/NIDDK NIH HHS/ -- R01HD059862/HD/NICHD NIH HHS/ -- R01HG003521-01/HG/NHGRI NIH HHS/ -- R01HG005058/HG/NHGRI NIH HHS/ -- R01HG006768/HG/NHGRI NIH HHS/ -- R01NS079231/NS/NINDS NIH HHS/ -- U01 GM061390/GM/NIGMS NIH HHS/ -- U19 GM061390/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Dec 12;504(7479):306-10. doi: 10.1038/nature12716. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2]. ; 1] Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Biological Sciences and Biotechnology, University of Milano-Bicocca, 20126 Milano, Italy. ; Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA. ; Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA. ; The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA. ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Lineage ; Chromatin/*genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; In Situ Hybridization, Fluorescence ; Mice ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/*genetics ; RNA Polymerase II/metabolism ; Transcription, Genetic/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9071
    Keywords: Colcemid ; meiosis ; recombination ; oogenesis ; nondisjunction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Colcemid was administered to gestational day 13 female mice to test effects on homologue pairing, synapsis and recombination of fetal oogenesis. Pairing abnormalities were detected in pachytene oocytes by light and electron microscopy examination of bivalents and synaptonemal complexes. Reduction of total chiasmata per treated diplotene oocyte (22.74) compared to controls (31.07) was found.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...