Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Publication Date: 2018-09-07
    Description: Plant immunity often penalizes growth and yield. The transcription factor Ideal Plant Architecture 1 (IPA1) reduces unproductive tillers and increases grains per panicle, which results in improved rice yield. Here we report that higher IPA1 levels enhance immunity. Mechanistically, phosphorylation of IPA1 at amino acid Ser 163 within its DNA binding domain occurs in response to infection by the fungus Magnaporthe oryzae and alters the DNA binding specificity of IPA1. Phosphorylated IPA1 binds to the promoter of the pathogen defense gene WRKY45 and activates its expression, leading to enhanced disease resistance. IPA1 returns to a nonphosphorylated state within 48 hours after infection, resuming support of the growth needed for high yield. Thus, IPA1 promotes both yield and disease resistance by sustaining a balance between growth and immunity.
    Keywords: Botany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-28
    Description: Meiosis is a specific type of cell division that is essential for sexual reproduction in most eukaryotes. Mitochondria are crucial cellular organelles that play important roles in reproduction, though the detailed mechanism by which the mitochondrial respiratory chain functions during meiosis remains elusive. Here, we show that components of the respiratory chain (Complexes I–V) play essential roles in meiosis initiation during the sporulation of budding yeast, Saccharomyces cerevisiae . Any functional defects in the Complex I component Ndi1p resulted in the abolishment of sporulation. Further studies revealed that respiratory deficiency resulted in the failure of premeiotic DNA replication due to insufficient IME1 expression. In addition, respiration promoted the expression of RIM101 , whose product inhibits Smp1p , a negative transcriptional regulator of IME1 , to promote meiosis initiation. In summary, our studies unveiled the close relationship between mitochondria and sporulation, and uncover a novel meiosis initiation pathway that is regulated by the respiratory chain.
    Print ISSN: 0016-6731
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Child 19 (1993), S. 0 
    ISSN: 1365-2214
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Psychology
    Notes: Summary Haemophilic children's perceptions of their own social and school function and their concerns about illness and expectations for the future were compared with those of diabetic and healthy children of the same age and social background. All three groups had similar anticipations about making friends, getting married, finding satisfactory employment and having children. Haemophilic and diabetic children were no more concerned than healthy children about being ill in the future and worried less about passing an illness on to others. Haemophilic, but not diabetic, children felt they were less able to run and play than others. The small sub-group of HIV-positive haemophiliacs differed only in that none of them envisaged having children.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-02
    Description: Elevated hepatic ceramide levels have been implicated in both insulin resistance (IR) and hepatic steatosis. To understand the factors contributing to hepatic ceramide levels in mice of both sexes, we have quantitated ceramides in a reference population of mice, the Hybrid Mouse Diversity Panel that has been previously characterized for a variety of metabolic syndrome traits. We observed significant positive correlations between Cer(d18:1/16:0) and IR/hepatic steatosis, consistent with previous findings, although the relationship broke down between sexes, as females were less insulin resistant, but had higher Cer(d18:1/16:0) levels than males. The sex difference was due in part to testosterone-mediated repression of ceramide synthase 6. One ceramide species, Cer(d18:1/20:0), was present at higher levels in males and was associated with IR only in males. Clear evidence of gene-by-sex and gene-by-diet interactions was observed, including sex-specific genome-wide association study results. Thus, our studies show clear differences in how hepatic ceramides are regulated between the sexes, which again suggests that the physiological roles of certain hepatic ceramides differ between the sexes.
    Print ISSN: 0022-2275
    Electronic ISSN: 1539-7262
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-04
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.8b04967
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-11
    Description: Previous evidence has suggested that puerarin may attenuate cardiac hypertrophy; however, the potential mechanisms have not been determined. Moreover, the use of puerarin is limited by severe adverse events, including intravascular hemolysis. This study used a rat model of abdominal aortic constriction (AAC)-induced cardiac hypertrophy to evaluate the potential mechanisms underlying the attenuating efficacy of puerarin on cardiac hypertrophy, as well as the metabolic mechanisms of puerarin involved. We confirmed that puerarin (50 mg/kg per day) significantly attenuated cardiac hypertrophy, upregulated Nrf2, and decreased Keap1 in the myocardium. Moreover, puerarin significantly promoted Nrf2 nuclear accumulation in parallel with the upregulated downstream proteins, including heme oxygenase 1, glutathione transferase P1, and NAD(P)H:quinone oxidoreductase 1. Similar results were obtained in neonatal rat cardiomyocytes (NRCMs) treated with angiotensin II (Ang II; 1 μ M) and puerarin (100 μ M), whereas the silencing of Nrf2 abolished the antihypertrophic effects of puerarin. The mRNA and protein levels of UGT1A1 and UGT1A9, enzymes for puerarin metabolism, were significantly increased in the liver and heart tissues of AAC rats and Ang II–treated NRCMs. Interestingly, the silencing of Nrf2 attenuated the puerarin-induced upregulation of UGT1A1 and UGT1A9. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction indicated that the binding of Nrf2 to the promoter region of Ugt1a1 or Ugt1a9 was significantly enhanced in puerarin-treated cardiomyocytes. These results suggest that Nrf2 is the key regulator of antihypertrophic effects and upregulation of the metabolic enzymes UGT1A1 and UGT1A9 of puerarin. The autoregulatory circuits between puerarin and Nrf2-induced UGT1A1/1A9 are beneficial to attenuate adverse effects and maintain the pharmacologic effects of puerarin.
    Print ISSN: 0022-3565
    Electronic ISSN: 1521-0103
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: BACKGROUND: A recent study has reported that the microbiota in endometrial fluid of patients receiving in vitro fertilization and embryo transfer (IVF-ET) may predict implantation and pregnancy rates. However, studies are lacking that simultaneously compare the microbiota between endometrial fluid and tissue samples. Whether the microbiota composition in endometrial fluid reflects that in the endometrial tissue remains unclear. METHODS: We systematically profiled the microbiota in endometrial fluid and tissue samples of IVF-ET patients using massively parallel sequencing. The bacterial 16S ribosomal RNA gene (V4 region) was PCR-amplified. Sequencing reads with 〉98% nucleotide identity were clustered as a bacterial taxon. To account for the different number of reads per sample, we normalized the read counts of each taxon before comparing its relative abundances across samples. RESULTS: Thirteen taxa, including Verrucomicrobiaceae, Brevundimonas , Achromobacter , Exiguobacterium , and Flavobacterium , were consistently detected only in endometrial tissue samples but not fluid samples. Eight taxa were detected in fluid but not tissue. Twenty-two taxa were differentially abundant between fluid and tissue samples (adjusted P values, 4.1 x 10 –25 to 0.025). The numbers of taxa identified per 1000 sequencing reads, diversity, and evenness in fluid samples were smaller than those in tissue samples. CONCLUSIONS: Our data suggest that the microbiota composition in endometrial fluid does not fully reflect that in endometrial tissue. Sampling from both endometrial fluid and biopsy allows a more comprehensive view of microbial colonization. Further efforts are needed to identify the preanalytical effects, including sampling sites, methods, and sequencing depth, on profiling endometrial microbiota.
    Keywords: Molecular Diagnostics and Genetics
    Print ISSN: 0009-9147
    Electronic ISSN: 1530-8561
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-12-16
    Description: Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Weidong -- Bloom, Joshua S -- Podsiadlowski, Philipp -- Miller, Adam A -- Cenko, S Bradley -- Jha, Saurabh W -- Sullivan, Mark -- Howell, D Andrew -- Nugent, Peter E -- Butler, Nathaniel R -- Ofek, Eran O -- Kasliwal, Mansi M -- Richards, Joseph W -- Stockton, Alan -- Shih, Hsin-Yi -- Bildsten, Lars -- Shara, Michael M -- Bibby, Joanne -- Filippenko, Alexei V -- Ganeshalingam, Mohan -- Silverman, Jeffrey M -- Kulkarni, S R -- Law, Nicholas M -- Poznanski, Dovi -- Quimby, Robert M -- McCully, Curtis -- Patel, Brandon -- Maguire, Kate -- Shen, Ken J -- England -- Nature. 2011 Dec 14;480(7377):348-50. doi: 10.1038/nature10646.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, University of California, Berkeley, California 94720-3411, USA. weidong@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22170681" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-17
    Description: Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong -- Garcia-Bassets, Ivan -- Benner, Chris -- Li, Wenbo -- Su, Xue -- Zhou, Yiming -- Qiu, Jinsong -- Liu, Wen -- Kaikkonen, Minna U -- Ohgi, Kenneth A -- Glass, Christopher K -- Rosenfeld, Michael G -- Fu, Xiang-Dong -- DK01847/DK/NIDDK NIH HHS/ -- DK074868/DK/NIDDK NIH HHS/ -- DK37949/DK/NIDDK NIH HHS/ -- GM049369/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- NS34934/NS/NINDS NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P01 DK074868-05/DK/NIDDK NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-10/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-30/DK/NIDDK NIH HHS/ -- R01 DK091183/DK/NIDDK NIH HHS/ -- R01 GM049369/GM/NIGMS NIH HHS/ -- R01 GM049369-17/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG004659-03/HG/NHGRI NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 HL065445-12/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-23/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- R37 DK039949-28/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 15;474(7351):390-4. doi: 10.1038/nature10006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21572438" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Tumor ; Cell Lineage ; Dihydrotestosterone/pharmacology ; Down-Regulation ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genome, Human/genetics ; HEK293 Cells ; Hepatocyte Nuclear Factor 3-alpha/deficiency/genetics/*metabolism ; Histones/metabolism ; Humans ; Kallikreins ; Male ; Prostate-Specific Antigen ; Prostatic Neoplasms/metabolism/pathology ; RNA, Small Interfering/genetics/metabolism ; RNA, Untranslated/*genetics ; Receptors, Androgen/*metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-23
    Description: The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Yue -- Li, Wenfei -- Li, Jian -- Wang, Jiawei -- Ge, Jingpeng -- Xu, Duo -- Liu, Yanjing -- Wu, Kaiqi -- Zeng, Qingyin -- Wu, Jia-Wei -- Tian, Changlin -- Zhou, Bing -- Yang, Maojun -- England -- Nature. 2012 Nov 15;491(7424):478-82. doi: 10.1038/nature11541. Epub 2012 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23086143" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/isolation & purification/metabolism ; Mitochondria/*enzymology ; *Models, Molecular ; NAD/chemistry ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/enzymology ; Saccharomyces cerevisiae Proteins/*chemistry/isolation & purification/metabolism ; Ubiquinone/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...