Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: APOPTOSIS ; EXPRESSION ; GROWTH-FACTOR ; IN-VIVO ; TUMOR-NECROSIS-FACTOR ; ACTIVATION ; NUCLEAR-FACTOR ; CELL-CYCLE PROGRESSION ; TERMINAL PHOSPHORYLATION ; HEPATIC REGENERATION
    Abstract: Mice lacking the AP-1 transcription factor c-jun die at mid-gestation showing heart defects and impaired hepatogenesis. To inactivate c-jun in hepatocytes, mice carrying a floxed c-jun allele were generated. Perinatal liver-specific c-jun deletion caused reduced hepatocyte proliferation and decreased body size. After partial hepatectomy, half of the mutants died and liver regeneration was impaired. This phenotype was not present in mice lacking the N-terminal phosphorylation sites of c-Jun. The failure to regenerate was accompanied by increased cell death and lipid accumulation in hepatocytes. Moreover, cyclin-dependent kinases and several cell cycle regulators were affected, resulting in inefficient G(1)-S phase progression. These studies identify c-Jun as a critical regulator of hepatocyte proliferation and survival during liver development and regeneration.
    Type of Publication: Journal article published
    PubMed ID: 11927562
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; GROWTH-FACTOR ; proliferation ; GENE-EXPRESSION ; SKIN ; C-JUN ; MAP KINASES ; MORPHOGENESIS ; SIGNAL-TRANSDUCTION PATHWAY ; EPIDERMAL-KERATINOCYTES
    Abstract: Previous studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs), JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts. Although cocultured JNK1/JNK2-deficient fibroblasts did not affect keratinocyte proliferation, temporal monitoring of the transcriptome of differentiating keratinocytes revealed that efficient keratinocyte differentiation not only requires the support by fibroblast-derived soluble factors, but is also critically dependent on JNK1 and JNK2 signaling in these cells. Moreover, we showed that the repertoire of fibroblast transcripts encoding secreted proteins is severely disarranged upon loss of JNK under the coculture conditions applied. Finally, our data demonstrate that efficient keratinocyte terminal differentiation requires constant presence of JNK-dependent and fibroblast-derived soluble factors. Taken together, our results imply that mesenchymal JNK has a pivotal role in the paracrine cross talk between dermal fibroblasts and epidermal keratinocytes during wound healing.
    Type of Publication: Journal article published
    PubMed ID: 24335928
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CELL-PROLIFERATION ; GENE-EXPRESSION ; C-JUN ; GROWTH-FACTOR-BETA ; MOLECULAR-CLONING ; MATRIX METALLOPROTEINASES ; NULL MUTATION ; receptor tyrosine kinase ; MOUSE EMBRYO IMPLANTATION ; UROKINASE ENHANCER
    Abstract: Lack of JunB, an immediate early gene product and member of the AP-1 transcription factor family causes embryonic lethality between E8.5 and E10.0. Although mutant embryos are severely retarded in growth and development, cellular proliferation is apparently not impaired. Retardation and embryonic death are caused by the inability of JunB-deficient embryos to establish proper vascular interactions with the maternal circulation due to multiple defects in extra-embryonic tissues. The onset of the phenotypic defects correlates well with high expression of junB in wild-type extra-embryonic tissues. In trophoblasts, the lack of JunB causes a deregulation of proliferin, matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA) gene expression, resulting in a defective neovascularization of the decidua. As a result of downregulation of the VEGF-receptor 1 (flt-1), blood vessels in the yolk sac mesoderm appeared dilated. Mutant embryos which escape these initial defects finally die from a non-vascularized placental labyrinth. Injection of junB-/- embryonic stem (ES) cells into tetraploid wild-type blastocysts resulted in a partial rescue, in which the ES cell-derived fetuses were no longer growth retarded and displayed a normal placental labyrinth. Therefore, JunB appears to be involved in multiple signaling pathways regulating genes involved in the establishment of a proper feto-maternal circulatory system.
    Type of Publication: Journal article published
    PubMed ID: 10022836
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: Despite therapeutic advances, multiple myeloma (MM) remains an incurable disease, predominantly due to the development of drug resistance. The activator protein-1 (AP-1) transcription factor family has been implicated in a multitude of physiologic processes and tumorigenesis; however, its role in MM is largely unknown. Here we demonstrate specific and rapid induction of the AP-1 family member JunB in MM cells when co-cultured with bone marrow stromal cells. Supporting a functional key role of JunB in MM pathogenesis, knockdown of JUNB significantly inhibited in vitro MM cell proliferation and survival. Consistently, induced silencing of JUNB markedly decreased tumor growth in a murine MM model of the microenvironment. Subsequent gene expression profiling revealed a role for genes associated with apoptosis, DNA replication and metabolism in driving the JunB-mediated phenotype in MM cells. Importantly, knockdown of JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. Moreover, 4-hydroxytamoxifen-induced activation of a JunB-ER fusion protein protected dexamethasone-sensitive MM cells against dexamethasone- and bortezomib- induced cytotoxicity. In summary, our results demonstrate for the first time a specific role for AP-1/JunB in MM cell proliferation, survival and drug resistance, thereby strongly supporting that this transcription factor is a promising new therapeutic target in MM.Leukemia accepted article preview online, 28 November 2016. doi:10.1038/leu.2016.358.
    Type of Publication: Journal article published
    PubMed ID: 27890927
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; EXPRESSION ; ARTHRITIS ; CARCINOGENESIS ; TUMOR PROGRESSION ; SQUAMOUS-CELL CARCINOMA ; keratinocyte ; MATRIX METALLOPROTEINASES ; TARGET GENE ; PSORIASIN S100A7
    Abstract: Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs.
    Type of Publication: Journal article published
    PubMed ID: 24029918
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...