Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Primary microcephaly 1 is a neurodevelopmental disorder caused by mutations in the MCPH1 gene, whose product MCPH1 (also known as microcephalin and BRIT1) regulates DNA-damage response. Here we show that Mcph1 disruption in mice results in primary microcephaly, mimicking human MCPH1 symptoms, owing to a premature switching of neuroprogenitors from symmetric to asymmetric division. MCPH1-deficiency abrogates the localization of Chk1 to centrosomes, causing premature Cdk1 activation and early mitotic entry, which uncouples mitosis and the centrosome cycle. This misorients the mitotic spindle alignment and shifts the division plane of neuroprogenitors, to bias neurogenic cell fate. Silencing Cdc25b, a centrosome substrate of Chk1, corrects MCPH1-deficiency-induced spindle misalignment and rescues the premature neurogenic production in Mcph1-knockout neocortex. Thus, MCPH1, through its function in the Chk1-Cdc25-Cdk1 pathway to couple the centrosome cycle with mitosis, is required for precise mitotic spindle orientation and thereby regulates the progenitor division mode to maintain brain size.
    Type of Publication: Journal article published
    PubMed ID: 21947081
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELL-PROLIFERATION ; GENE-EXPRESSION ; C-JUN ; GROWTH-FACTOR-BETA ; MOLECULAR-CLONING ; MATRIX METALLOPROTEINASES ; NULL MUTATION ; receptor tyrosine kinase ; MOUSE EMBRYO IMPLANTATION ; UROKINASE ENHANCER
    Abstract: Lack of JunB, an immediate early gene product and member of the AP-1 transcription factor family causes embryonic lethality between E8.5 and E10.0. Although mutant embryos are severely retarded in growth and development, cellular proliferation is apparently not impaired. Retardation and embryonic death are caused by the inability of JunB-deficient embryos to establish proper vascular interactions with the maternal circulation due to multiple defects in extra-embryonic tissues. The onset of the phenotypic defects correlates well with high expression of junB in wild-type extra-embryonic tissues. In trophoblasts, the lack of JunB causes a deregulation of proliferin, matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA) gene expression, resulting in a defective neovascularization of the decidua. As a result of downregulation of the VEGF-receptor 1 (flt-1), blood vessels in the yolk sac mesoderm appeared dilated. Mutant embryos which escape these initial defects finally die from a non-vascularized placental labyrinth. Injection of junB-/- embryonic stem (ES) cells into tetraploid wild-type blastocysts resulted in a partial rescue, in which the ES cell-derived fetuses were no longer growth retarded and displayed a normal placental labyrinth. Therefore, JunB appears to be involved in multiple signaling pathways regulating genes involved in the establishment of a proper feto-maternal circulatory system.
    Type of Publication: Journal article published
    PubMed ID: 10022836
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: The high prevalence and great diversity of p53 tumor suppressor gene mutations in human tumors call for development of therapeutic molecules that rescue function of aberrant p53 protein. P53 mutations also offer new approaches to the study of the origins of mutations in human cancer. An experimental mouse model with a genetically modified but normal functioning p53 gene harboring the human rather than the murine core domain, would be of considerable benefit to research on both cancer therapeutics and etiology; however, it is uncertain whether such mice would permit biological functions of p53 to be retained. Using a Cre/lox P gene-targeting approach, we have constructed a human p53 knock-in (hupki) mouse strain in which exons 4-9 of the endogenous mouse p53 allele were replaced with the homologous, normal human p53 gene sequence. The chimeric p53 allele (p53(KI)) is properly spliced, transcribed in various tissues at levels equivalent to wild-type mice, and yields cDNA with the anticipated sequence, that is, with a core domain matching that of humans. The hupki p53 protein binds to p53 consensus sequences in gel mobility shift assays and accumulates in the nucleus of hupki fibroblasts in response to UV irradiation, as is characteristic of wild-type p53. Induction of various p53-regulated genes in spleen of gamma-irradiated homozygous hupki mice (p53(KI/KI)), and the kinetics of p53-dependent apoptosis in thymocytes are similar to results with wild-type (p53(+/+)) mice, further indicating normal p53 pathway function in the hupki strain. The mice are phenotypically normal and do not develop spontaneous tumors at an early age, in contrast to knock-out (p53(-/-)) strains with a defective p53 gene. The chimeric (p53(KI)) allele thus appears to provide a biological equivalent to the endogenous murine (p53(+)) gene. This strain is a unique tool for examining in vivo spontaneous and induced mutations in human p53 gene sequences for comparison with published human tumor p53 mutation spectra. In addition, the hupki strain paves the way for mouse models in pre-clinical testing of pharmaceuticals designed to modulate DNA-binding activity of human p53.
    Type of Publication: Journal article published
    PubMed ID: 11313961
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...