Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: PROGRESSION ; FIBER ; COLON-CANCER ; ULCERATIVE-COLITIS ; METAANALYSIS ; RED MEAT ; MULTIETHNIC COHORT ; susceptibility loci ; ENVIRONMENT INTERACTION ; ASSOCIATION SCAN
    Abstract: Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention.
    Type of Publication: Journal article published
    PubMed ID: 24743840
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: POLYMORPHISMS ; COLON-CANCER ; NONSTEROIDAL ANTIINFLAMMATORY DRUGS ; chemoprevention ; METAANALYSIS ; CYCLOOXYGENASE-2 ; GENOME-WIDE ASSOCIATION ; PROSTAGLANDIN E-2 BIOSYNTHESIS ; PIK3CA MUTATION ; INTERLEUKIN-16
    Abstract: MPORTANCE Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. OBJECTIVE To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene x environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. MAIN OUTCOMES AND MEASURES Colorectal cancer. RESULTS Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% Cl, 0.64-0.74]; P = 6.2 x 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 x 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P =7.7 x 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% Cl, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 x 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 x 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% Cl, 0.78-1.20]; P = .76). CONCLUSIONS AND RELEVANCE In this genome-wide investigation of gene x environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.
    Type of Publication: Journal article published
    PubMed ID: 25781442
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; COHORT ; RISK ; GENE ; RISK-FACTORS ; ASSOCIATION ; POLYMORPHISMS ; SUSCEPTIBILITY ; VARIANTS ; HEALTH ; COLON-CANCER ; ALCOHOL ; CONSUMPTION ; FRUIT ; LIFE-STYLE ; MASS INDEX ; CANCER SUSCEPTIBILITY ; METAANALYSIS ; VEGETABLE CONSUMPTION ; LOCI ; GENOME-WIDE ASSOCIATION ; sex ; SCAN ; RISK LOCI ; CHROMOSOME 8Q24
    Abstract: Genome-wide association studies (GWAS) have identified more than a dozen loci associated with colorectal cancer (CRC) risk. Here, we examined potential effect-modification between single-nucleotide polymorphisms (SNP) at 10 of these loci and probable or established environmental risk factors for CRC in 7,016 CRC cases and 9,723 controls from nine cohort and case-control studies. We used meta-analysis of an efficient empirical-Bayes estimator to detect potential multiplicative interactions between each of the SNPs [rs16892766 at8q23.3 (EIF3H/UTP23), rs6983267 at 8q24 (MYC), rs10795668 at 10p14 (FLJ3802842), rs3802842 at 11q23 (LOC120376), rs4444235 at 14q22.2 (BMP4), rs4779584 at 15q13 (GREM1), rs9929218 at 16q22.1 (CDH1), rs4939827 at 18q21 (SMAD7), rs10411210 at 19q13.1 (RHPN2), and rs961253 at 20p12.3 (BMP2)] and select major CRC risk factors (sex, body mass index, height, smoking status, aspirin/nonsteroidal anti-inflammatory drug use, alcohol use, and dietary intake of calcium, folate, red meat, processed meat, vegetables, fruit, and fiber). The strongest statistical evidence for a gene-environment interaction across studies was for vegetable consumption and rs16892766, located on chromosome 8q23.3, near the EIF3H and UTP23 genes (nominal P-interaction = 1.3 x 10(-4); adjusted P = 0.02). The magnitude of the main effect of the SNP increased with increasing levels of vegetable consumption. No other interactions were statistically significant after adjusting for multiple comparisons. Overall, the association of most CRC susceptibility loci identified in initial GWAS seems to be invariant to the other risk factors considered; however, our results suggest potential modification of the rs16892766 effect by vegetable consumption.
    Type of Publication: Journal article published
    PubMed ID: 22367214
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...