Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Abstract: Transcriptional regulation by the glucocorticoid receptor (GR) is essential for survival. Since the GR can influence transcription both through DNA-binding-dependent and -independent mechanisms, we attempted to assess their relative importance in vivo. In order to separate these modes of action, we introduced the point mutation A458T into the GR by gene targeting using the Cre/loxP system. This mutation impairs dimerization and therefore GRE-dependent transactivation while functions that require cross-talk with other transcription factors, such as transrepression of AP-1-driven genes, remain intact. In contrast to GR-/- mice, these mutants termed GRdim are viable, revealing the in vivo relevance of DNA-binding-independent activities of the GR.
    Type of Publication: Journal article published
    PubMed ID: 9604929
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-29
    Description: Bo Zhang, Uyen Tran, and Oliver Wessely The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown – as in the case of Gnas – results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...