Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Keywords: Life sciences ; Food science ; Agriculture ; Life sciences ; Agriculture ; Food science ; Environmental Monitoring/Analysis ; Springer eBooks
    Pages: : digital
    ISBN: 9789048196340
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Artificial diets ; Choristoneura occidentalism ; Lepidoptera ; Tortricidae ; Douglas fir ; microencapsulated terpenes ; monoterpenes ; multiple generation bioassay ; nutritional ecology ; oxygenated monoterpenes ; Pseudotsuga menziesii ; western spruce budworm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We have developed and tested a technique to microencapsulate terpene compounds by forming gelatin-walled microcapsules around the terpene essential oils. Eight terpenes that are common constituents of Douglas fir (Pseudotsuga menziesii) oleoresin were encapsulated, including five monoterpenes (α-pinene,β-pinene, camphene, myrcene, and limonene) and three oxygenated monoterpenes (bornyl acetate, linalool, andβ-citronellol). The encapsulated terpenes were mixed into artificial diets to determine the effects they had on western spruce budworm (Choristoneura occidentalis) survival and reproduction, using a three-generation bioassay. We describe the technique and present data from preliminary bioassays with seven of the terpenes to demonstrate thatC. occidentalis larvae would consume diets fortified with microencapsulated terpenes. The technique is useful because it helps to reduce the rate at which terpenes volatilize from the diets and it “packages” the terpenes in a manner more closely resembling the way they are present in the resin canals of plant foliage. Many scientists investigating the biological importance of terpenes in mediating plant-herbivore interactions may find that microencapsulated terpenes are useful in both laboratory diet studies and field and greenhouse experiments with plant material.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: To understand the function of the individual oncogenes of HPV16 in modulating the cellular response to apoptogenic signals, we used human keratinocytes immortalized with either E6, E7 or E6/E7 oncoproteins as model system. Applying CD95 antibodies or recombinant CD95 ligand, only the E7-immortalized cells underwent extensive apoptosis. In contrast, E6- and E6/E7-expressing keratinocytes were resistant. Dominance of E6 correlated with significant down-regulation of p53, c-Myc, p21 and Bcl-2. CD95 was found to be reduced in resistant HPV-positive cells, while there were no quantitative differences in expression levels of FADD, FLICE/caspase-8 or caspase-3. Notably, in contrast to primary human keratinocytes, all immortalized cells showed a general reduction of c-FLIP, an inhibitory protein which normally prevents unscheduled CD95-induced apoptosis. E6- and E6/E7-positive keratinocytes, however, can be sensitized to CD95 apoptosis by blocking proteasome-mediated proteolysis. CD95-resistant HPV-positive cells underwent apoptosis within 3-5 h upon co-incubation with MG132 and agonistic antibodies or CD95 ligand, which was preceded by a strong re-expression of p53 and c-Myc, but not of other half-life controlled proteins such as Bax or IkappaBalpha. Blockage of proteasomal activity alone did not result in apoptosis, although the same set of pro-apoptotic proteins was up-regulated. Performing similar experiments with cervical carcinoma cells expressing mutated p53 (C33a) or with p53-'null' lung carcinoma cells (H1299), no CD95 cell killing occurred even though c-Myc was strongly induced. These data indicate that the reduced bioavailability of p53 is a key-regulatory event in perturbation of CD95 signaling in HPV16 immortalized keratinocytes.
    Type of Publication: Journal article published
    PubMed ID: 11803460
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: VISUALIZATION ; MRI ; TRACT ; BRAIN-TUMOR SURGERY
    Abstract: BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.
    Type of Publication: Journal article published
    PubMed ID: 26259925
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  133. Kongress der Deutschen Gesellschaft für Chirurgie; 20160426-20160429; Berlin; DOC16dgch458 /20160421/
    Publication Date: 2016-04-22
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-28
    Description: Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z approximately 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Erica -- van Dokkum, Pieter -- Franx, Marijn -- Brammer, Gabriel -- Momcheva, Ivelina -- Schreiber, Natascha Forster -- da Cunha, Elisabete -- Tacconi, Linda -- Bezanson, Rachel -- Kirkpatrick, Allison -- Leja, Joel -- Rix, Hans-Walter -- Skelton, Rosalind -- van der Wel, Arjen -- Whitaker, Katherine -- Wuyts, Stijn -- England -- Nature. 2014 Sep 18;513(7518):394-7. doi: 10.1038/nature13616. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, Yale University, New Haven, Connecticut 06511, USA. ; Leiden Observatory, Leiden University, NL-2300 RA Leiden, The Netherlands. ; Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA. ; Max-Planck-Institut fur Extraterrestrische Physik, Giessenbackstrasse 1, 85748 Garching, Germany. ; Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany. ; Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA. ; Department of Astronomy, University of Massachusetts, Amherst, Massachusetts 01002, USA. ; South African Astronomical Observatory, PO Box 9, Observatory, Cape Town 7935, South Africa. ; Astrophysics Science Division, Goddard Space Center, Greenbelt, Maryland 20771, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162527" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-02
    Description: Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundem, Gunes -- Van Loo, Peter -- Kremeyer, Barbara -- Alexandrov, Ludmil B -- Tubio, Jose M C -- Papaemmanuil, Elli -- Brewer, Daniel S -- Kallio, Heini M L -- Hognas, Gunilla -- Annala, Matti -- Kivinummi, Kati -- Goody, Victoria -- Latimer, Calli -- O'Meara, Sarah -- Dawson, Kevin J -- Isaacs, William -- Emmert-Buck, Michael R -- Nykter, Matti -- Foster, Christopher -- Kote-Jarai, Zsofia -- Easton, Douglas -- Whitaker, Hayley C -- ICGC Prostate UK Group -- Neal, David E -- Cooper, Colin S -- Eeles, Rosalind A -- Visakorpi, Tapio -- Campbell, Peter J -- McDermott, Ultan -- Wedge, David C -- Bova, G Steven -- 077012/Wellcome Trust/United Kingdom -- A12758/Cancer Research UK/United Kingdom -- A14835/Cancer Research UK/United Kingdom -- CA92234/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Intramural NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):353-7. doi: 10.1038/nature14347. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. ; 1] Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK [2] Department of Human Genetics, KU Leuven, Herestraat 49 Box 602, B-3000 Leuven, Belgium [3] Cancer Research UK London Research Institute, London WC2A 3LY, UK. ; 1] Norwich Medical School and Department of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK [2] The Genome Analysis Centre, Norwich NR4 7UH, UK. ; Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere FI-33520, Finland. ; The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA. ; Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Maryland 20892, USA. ; University of Liverpool and HCA Pathology Laboratories, London WC1E 6JA, UK. ; Division of Genetics and Epidemiology, The Institute Of Cancer Research, London SW7 3RP, UK. ; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK. ; Uro-oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK. ; 1] Uro-oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK [2] Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK. ; 1] Norwich Medical School and Department of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK [2] Division of Genetics and Epidemiology, The Institute Of Cancer Research, London SW7 3RP, UK. ; 1] Division of Genetics and Epidemiology, The Institute Of Cancer Research, London SW7 3RP, UK [2] Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; and Sutton SM2 5PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830880" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/deficiency ; *Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; Disease Progression ; Epigenesis, Genetic ; Genes, Tumor Suppressor ; Humans ; Male ; Neoplasm Metastasis/genetics/*pathology ; Prostatic Neoplasms/genetics/metabolism/*pathology ; Receptors, Androgen/metabolism ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitaker, Benjamin J -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):187-8. doi: 10.1126/science.1212327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, University of Leeds, Leeds, UK. b.j.whitaker@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998378" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    David C. Wedge; Gunes Gundem; Thomas Mitchell; Dan J. Woodcock; Inigo Martincorena; Mohammed Ghori; Jorge Zamora; Adam Butler; Hayley Whitaker; Zsofia Kote-Jarai; Ludmil B. Alexandrov; Peter Van Loo; Charlie E. Massie; Stefan Dentro; Anne Y. Warren; Clare Verrill; Dan M. Berney; Nening Dennis; Sue Merson; Steve Hawkins; William Howat; Yong-Jie Lu; Adam Lambert; Jonathan Kay; Barbara Kremeyer; Katalin Karaszi; Hayley Luxton; Niedzica Camacho; Luke Marsden; Sandra Edwards; Lucy Matthews; Valeria Bo; Daniel Leongamornlert; Stuart McLaren; Anthony Ng; Yongwei Yu; Hongwei Zhang; Tokhir Dadaev; Sarah Thomas; Douglas F. Easton; Mahbubl Ahmed; Elizabeth Bancroft; Cyril Fisher; Naomi Livni; David Nicol; Simon TavaréPelvender Gill; Christopher Greenman; Vincent Khoo; Nicholas Van As; Pardeep Kumar; Christopher Ogden; Declan Cahill; Alan Thompson; Erik Mayer; Edward Rowe; Tim Dudderidge; Vincent Gnanapragasam; Nimish C. Shah; Keiran Raine; David Jones; Andrew Menzies; Lucy Stebbings; Jon Teague; Steven Hazell; Cathy Corbishley; Johann de Bono; Gerhardt Attard; William Isaacs; Tapio Visakorpi; Michael Fraser; Paul C. Boutros; Robert G. Bristow; Paul Workman; Chris Sander; Freddie C. Hamdy; Andrew Futreal; Ultan McDermott; Bissan Al-Lazikani; Andrew G. Lynch; G. Steven Bova; Christopher S. Foster; Daniel S. Brewer; David E. Neal; Colin S. Cooper; Rosalind A. Eeles
    Nature Publishing Group (NPG)
    Publication Date: 2018-04-17
    Description: Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets, Published online: 16 April 2018; doi:10.1038/s41588-018-0086-z Joint analysis of new and previously published sequencing data for primary and metastatic prostate cancers identifies new candidate driver mutations and provides insights into disease progression and potential drug targets.
    Print ISSN: 1061-4036
    Electronic ISSN: 1546-1718
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...