Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Wheat ; Spelt ; RFLP ; Marker Genetic diversity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fifty-two winter wheat (Triticum aestivum L.), nine spring wheat, and 20 spelt (Triticum spelta L.) lines representing part of the European breeding germplasm, were assayed for RFLPs (restriction fragment length polymorphisms) with 56 wheat DNA clones and two barley cDNA clones. Objectives of this study were to (1) determine the level of variation for RFLPs in the wheat and spelt breeding lines, (2) characterize the genetic diversity within the European winter wheat germplasm, and (3) evaluate the usefulness of RFLP markers for pedigree analysis and the grouping of wheat and spelt lines of various origins. Seventy-three of the 166 RFLP loci detected with 58 probes and one restriction enzyme were polymorphic for the 81 lines. The percentage of polymorphic loci was greatest for the B genome (58%) and smallest for the D genome (21%). Among the 81 lines, 271 different RFLP bands were detected. RFLP band frequencies of the winter wheat lines differed considerably (≥0.5) from those of the spring wheat lines at five loci, and from those of the spelt lines at 17 loci. Eight cultivars that had a major impact as progenitors on the development of improved winter wheat cultivars accounted for 93% of the observed RFLP bands in winter wheat. Genetic distance (GD) estimates between two lines ranged between 0.01 and 0.21. Mean GD estimates within winter wheat (0.083), within spring wheat (0.108) and within spelt (0.096) were smaller than between spring and winter wheat (0.114), and greatest between winter wheat and spelt (0.132) and spring wheat and spelt (0.148). Principal coordinate analysis performed on GD estimates revealed a clear separation of wheat and spelt germplasm. Novel spelt lines with various proportions of wheat germplasm were positioned between wheat and traditional spelt lines. The spring wheat lines formed a distinct group at the periphery of the distribution of the winter wheat lines. Subgroupings of the winter wheat lines according to the cluster analysis were in good agreement with their origin, and lines with common ancestors were grouped together.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Leaf rust ; Adult plant resistance ; Sequence-tagged-site ; Triticum speltoides ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Triticum aestivum ; QTL ; Leaf rust ; Durable resistance ; Leaf-tip necrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Quantitative resistance that delays the epidemic development of leaf rust in wheat is an important source for durable resistance breeding. The Swiss winter wheat variety ’Forno’ shows a high level of quantitative resistance against leaf rust. This resistance has been effective for more than 10 years and can therefore be considered to be durable. In order to map quantitative trait loci (QTL) for durable leaf rust resistance we analysed 204 F5 recombinant inbred lines (RILs) of the cross between the winter wheat ’Forno’ and the winter spelt ’Oberkulmer’ for their level of leaf rust resistance (LR) and leaf tip necrosis (LTN) in four different environments. Both traits showed a continuous distribution and were significantly correlated (r=−0.5). Across environments we detected 8 QTL for leaf rust resistance (6 inherited from ’Forno’) and 10 QTL for the quantitative expression of LTN (6 inherited from ’Forno’). Of the 6 QTL responsible for the durable leaf rust resistance of ’Forno’, 1 major QTL coincided with a thaumatin locus on 7BL explaining 35% of the phenotypic variance. Four QTL for LR coincided with QTL for LTN. At these loci the alleles of ’Forno’ increased the level of resistance as well as the extent of LTN, indicating pleiotropy.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Leaf rust ; RAPD ; RFLP ; Triticum aestivum ; Triticum spelta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety ‘Oberkulmer’ was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Leaf rust ; RFLP ; RAPD ; Wheat ; Agropyron elongatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The objective of this study was to identify molecular markers linked to the wheat leaf rust resistance gene Lr24 derived from Agropyron elongatum (3DL/3Ag translocation). Two near isogenic lines (NILs), ‘Arina’ and Lr24/7 * “Arina”, were screened for polymorphism at the DNA level with 115 RFLP probes. Twenty-one of these probes map to the homoeologous group 3. In addition, 360 RAPD primers were tested on the NILs. Six RFLP probes showed polymorphism between the NILs, and 11 RAPD primers detected one additional band in the resistant NIL. The genetic linkage of the polymorphic markers with Lr24 was tested on a segregating F2 population (150 plants) derived from a cross between the leaf rust resistant Lr24/7 * “Arina” and the susceptible spelt (Triticum spelta) variety ‘Oberkulmer’. All 6 RFLP markers were completely linked to Lr24: one was inherited as a codominant marker (PSR1205), one was in coupling phase (PSR1203) and 4 were in repulsion phase (PSR388, PSR904, PSR931, PSR1067) with Lr24. The localization of these probes on chromosome 3D was confirmed by nulli-tetrasomic analysis. Distorted genotypic segregation was found for the Codominant RFLP marker PSR1205. This distortion can be explained by the occurrence of hemizygous plants. One of the 11 RAPD markers (OPJ-09) also showed complete linkage to theLr24 resistance gene. The polymorphic RAPD fragment was cloned and sequenced. Specific primers were synthesized, and they produced an amplification product only in the resistant plants. This specific marker allows a reliable and rapid screening of a large number of genotypes in practical breeding. Analysis of 6 additional lines containing Lr24 revealed that 3 lines have a smaller chromosomal segment of A. elongatum than lines derived from ‘Agent’, a commonly used gene donor for the Lr24 resistance gene.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words In vitro selection ; Septoria nodorum ; Triticum aestivum L. ; Crude extract ; Toxin resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  This study was carried out to develop an in vitro test for the identification of genotypes resistant to Septoria nodorum blotch. The basis for this project was a previous study in which a crude extract of S. nodorum was used as a selective agent (Keller et al. 1994). It was possible to distinguish resistant and susceptible cultivars in an in vitro test with zygotic embryos. In our project we wanted to test whether this in vitro test can also be used to detect resistant and susceptible genotypes in early segregating populations. Specific crosses between eight winter wheat lines showing contrasting resistance reaction for S. nodorum blotch on leaves and ears were made. The resistance level of both leaf and ear was evaluated after artificial inoculation in the field for the parental lines, the F1 progenies, as well as for segregating F3 and F4 populations. In addition, this plant material was tested in vitro using methods similar to those described by Keller et al. (1994), i.e. culturing immature zygotic embryos and mature seeds on selective media. A good agreement between in vitro screening and field resistance on the ear was found for the parental lines, the F1 and F4 generation but not for the F3 generations. This leads to the conclusion that the in vitro screening might be integrated into wheat breeding programs. Populations showing a high susceptibility to the pathogen metabolites in vitro could be discarded. Another promising implementation for wheat breeding would be the screening of advanced breeding material or candidate partners in a crossing program for resistance on the ear. However, the in vitro screening is not precise enough to select single plants in early segregating populations.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Key words Septoria nodorum ; Triticum aestivum L. ; Inheritance ; Resistance breeding ; Artifical inoculation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Sixteen crosses between eight winter wheat cultivars were screened for resistance to Septoria nodorum leaf and glume blotch in the F1 and F4 generations using artificial inoculation in the field. The F1 of most crosses showed dominance for susceptibility on both ear and leaf. The effects of general combining ability were of similar magnitude as the effects for specific combining ability. On the basis of the phenotypic difference of the parents, no prediction was possible about the amount and the direction of genetic variance in the segregating populations. The variation observed in this study both within and among the segregating populations suggests a quantitative inheritance pattern influencing the expression of the two traits. The components of variance between F2 families within a population were as high as (for S. nodorum blotch on the ear) or higher (for S. nodorum blotch on the leaf) than those between populations. Therefore, strong selection within a few populations may be as effective to obtain new resistant genotypes as selection in a large number of populations. In almost all crosses, progenies were found that were more resistant than the better parent. Thus transgression breeding may be a tool to breed for higher levels of resistance to S. nodorum blotch. Highly resistant genotypes were found even in combination with two susceptible parents. The genetic source for Septoria resistance is probably broader than is generally assumed and could be used to improve S. nodorum resistance by combination breeding followed by strong selection in large populations.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Erysiphe graminis ; Powdery mildew resistance ; QTL ; Triticum aestivum ; Triticum spelta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi-continental climate and can strongly affect grain yield. The attempt to control powdery mildew with major resistance genes (Pm genes) has not provided a durable resistance. Breeding for quantitative resistance to powdery mildew is more promising, but is difficult to select on a phenotypic basis. In this study, we mapped and characterised quantitative trait loci (QTLs) for adult-plant powdery mildew resistance in a segregating population of 226 recombinant inbred lines derived from the cross of the Swiss wheat variety Forno with the Swiss spelt variety Oberkulmer. Forno possibly contains the Pm5 gene and showed good adult-plant resistance in the field. Oberkulmer does not have any known Pm gene and showed a moderate susceptible reaction. Powdery mildew resistance was assessed in field trials at two locations in 1995 and at three locations in 1996. The high heritability (h2=0.97) for powdery mildew resistance suggests that the environmental influence did not affect the resistance phenotype to a great extent. QTL analysis was based on a genetic map containing 182 loci with 23 linkage groups (2469 cM). With the method of composite interval mapping 18 QTLs for powdery mildew resistance were detected, explaining 77% of the phenotypic variance in a simultaneous fit. Two QTLs with major effects were consistent over all five environments. One of them corresponds to the Pm5 locus derived from Forno on chromosome 7B. The other QTL on 5A, was derived from the spelt variety Oberkulmer and did not correspond to any known Pm gene. In addition, five QTLs were consistent over three environments, and six QTLs over two environments. The QTL at the Pm5 locus showed a large effect, although virulent races for Pm5 were present in the mixture of isolates. Molecular markers linked with QTLs for adult-plant resistance offer the possibility of simultaneous marker-assisted selection for major and minor genes.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2242
    Keywords: Key words Lodging ; Morphological traits ; QTL ; Triticum aestivum ; Triticum spelta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Lodging can strongly affect both the grain yield and the quality of wheat. Lodging represents a quantitative trait and is difficult to assess on a phenotypic basis. Marker-assisted selection (MAS) could therefore become an important tool in breeding for lodging resistance. In this study, we mapped and characterised quantitative trait loci (QTLs) for lodging resistance, as well as morphological traits correlated with lodging, in a segregating population of 226 recombinant inbred lines derived from the cross of the lodging-resistant wheat variety Forno with the susceptible spelt variety Oberkulmer. Lodging, plant height, leaf width, leaf-growth habit, culm stiffness, culm swinging, culm thickness, days to ear emergence and days to flowering were assessed in field trials at two locations in 1996 and at one location in 1997. Additionally, at one location weight and length parameters were also assessed. Plant height and culm stiffness explained 77% of the phenotypic variance of lodging in a multiple regression model over all three environments. QTL analysis of lodging and morphological parameters was based on a genetic map containing 230 loci with 23 linkage groups (2469 cM). With the method of composite interval mapping nine QTLs for lodging resistance were detected, explaining 63% of the phenotypic variance in a simultaneous fit. Seven of these QTLs coincided with QTLs for morphological traits, reflecting the correlations between these traits and lodging. In our population the most efficient way to improve lodging resistance would be by a combination of indirect selection on plant height and culm stiffness together with MAS on the two QTLs for lodging resistance which did not coincide with QTLs for morphological traits.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...