Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-02-02
    Description: Transmissible gastroenteritis virus (TGEV), a member of the coronaviridae family, could cause fatal diarrhea of piglets and result in numerous economic losses. Previous studies demonstrated that TGEV infection could lead to mitochondrial damage and upregulate miR-4331 level. So miR-4331 may play an important regulatory role in the control of mitochondrial function. To explore the potential role of miR-4331 in mitochondrial damage, we adopted a strategy consisting of quantitative proteomic analysis of porcine kidney (PK-15) cells in response to miR-4331 and TGEV infection. Eventually, 69 differentially expressed proteins were gained. The target of miR-4331 was identified. The effects of miR-4331 and its target RB1 on mitochondrial Ca 2+ level, mitochondrial membrane potential (MMP), interleukin-1 receptor accessory protein (IL1RAP), p38 MAPK signaling pathway were investigated. The results showed that miR-4331 elevated mitochondrial Ca 2+ level, reduced MMP, targets Retinoblastoma 1 (RB1), upregulated IL1RAP, and induced activation of p38 MAPK pathway during TGEV infection. RB1 was identified as the direct targets of miR-4331 and downregulated IL1RAP, suppressed the activation of p38 MPAK, and attenuated TGEV-induced mitochondrial damage. In addition, IL1RAP played a positive role in activating p38 MAPK signaling and negative role in TGEV-induced mitochondrial damage. The data indicate that miR-4331 aggravates TGEV-induced mitochondrial damage by repressing expression of RB1, promoting IL1RAP, and activating p38 MAPK pathway.
    Print ISSN: 1535-9476
    Electronic ISSN: 1535-9484
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Heidelberg : Spektrum Akad. Verl.
    Call number: 0215:30
    Keywords: DNA-Binding Proteins ; Promoter Regions (Genetics) ; Enhancer Elements (Genetics) ; Transcription Factors
    Pages: 262 p. : ill.
    ISBN: 3-8274-0176-3
    Signatur Availability
    0215:30 departmental collection or stack – please contact the library
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-17
    Description: Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The interplay between topological order and symmetry breaking, such as that observed in superconductivity, can lead to new quantum phenomena and devices. We fabricated a superconducting TI/superconductor heterostructure by growing dibismuth triselenide (Bi(2)Se(3)) thin films on superconductor niobium diselenide substrate. Using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we observed the superconducting gap at the Bi(2)Se(3) surface in the regime of Bi(2)Se(3) film thickness where topological surface states form. This observation lays the groundwork for experimentally realizing Majorana fermions in condensed matter physics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Mei-Xiao -- Liu, Canhua -- Xu, Jin-Peng -- Yang, Fang -- Miao, Lin -- Yao, Meng-Yu -- Gao, C L -- Shen, Chenyi -- Ma, Xucun -- Chen, X -- Xu, Zhu-An -- Liu, Ying -- Zhang, Shou-Cheng -- Qian, Dong -- Jia, Jin-Feng -- Xue, Qi-Kun -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):52-5. doi: 10.1126/science.1216466. Epub 2012 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422860" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-29
    Description: 'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locke, Devin P -- Hillier, LaDeana W -- Warren, Wesley C -- Worley, Kim C -- Nazareth, Lynne V -- Muzny, Donna M -- Yang, Shiaw-Pyng -- Wang, Zhengyuan -- Chinwalla, Asif T -- Minx, Pat -- Mitreva, Makedonka -- Cook, Lisa -- Delehaunty, Kim D -- Fronick, Catrina -- Schmidt, Heather -- Fulton, Lucinda A -- Fulton, Robert S -- Nelson, Joanne O -- Magrini, Vincent -- Pohl, Craig -- Graves, Tina A -- Markovic, Chris -- Cree, Andy -- Dinh, Huyen H -- Hume, Jennifer -- Kovar, Christie L -- Fowler, Gerald R -- Lunter, Gerton -- Meader, Stephen -- Heger, Andreas -- Ponting, Chris P -- Marques-Bonet, Tomas -- Alkan, Can -- Chen, Lin -- Cheng, Ze -- Kidd, Jeffrey M -- Eichler, Evan E -- White, Simon -- Searle, Stephen -- Vilella, Albert J -- Chen, Yuan -- Flicek, Paul -- Ma, Jian -- Raney, Brian -- Suh, Bernard -- Burhans, Richard -- Herrero, Javier -- Haussler, David -- Faria, Rui -- Fernando, Olga -- Darre, Fleur -- Farre, Domenec -- Gazave, Elodie -- Oliva, Meritxell -- Navarro, Arcadi -- Roberto, Roberta -- Capozzi, Oronzo -- Archidiacono, Nicoletta -- Della Valle, Giuliano -- Purgato, Stefania -- Rocchi, Mariano -- Konkel, Miriam K -- Walker, Jerilyn A -- Ullmer, Brygg -- Batzer, Mark A -- Smit, Arian F A -- Hubley, Robert -- Casola, Claudio -- Schrider, Daniel R -- Hahn, Matthew W -- Quesada, Victor -- Puente, Xose S -- Ordonez, Gonzalo R -- Lopez-Otin, Carlos -- Vinar, Tomas -- Brejova, Brona -- Ratan, Aakrosh -- Harris, Robert S -- Miller, Webb -- Kosiol, Carolin -- Lawson, Heather A -- Taliwal, Vikas -- Martins, Andre L -- Siepel, Adam -- Roychoudhury, Arindam -- Ma, Xin -- Degenhardt, Jeremiah -- Bustamante, Carlos D -- Gutenkunst, Ryan N -- Mailund, Thomas -- Dutheil, Julien Y -- Hobolth, Asger -- Schierup, Mikkel H -- Ryder, Oliver A -- Yoshinaga, Yuko -- de Jong, Pieter J -- Weinstock, George M -- Rogers, Jeffrey -- Mardis, Elaine R -- Gibbs, Richard A -- Wilson, Richard K -- G0501331/Medical Research Council/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 AG022064/AG/NIA NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-08/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Jan 27;469(7331):529-33. doi: 10.1038/nature09687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. dlocke@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centromere/genetics ; Cerebrosides/metabolism ; Chromosomes ; Evolution, Molecular ; Female ; Gene Rearrangement/genetics ; Genetic Speciation ; *Genetic Variation ; Genetics, Population ; Genome/*genetics ; Humans ; Male ; Phylogeny ; Pongo abelii/*genetics ; Pongo pygmaeus/*genetics ; Population Density ; Population Dynamics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cong, Peiyun -- Ma, Xiaoya -- Hou, Xianguang -- Edgecombe, Gregory D -- Strausfeld, Nicholas J -- England -- Nature. 2014 Dec 11;516(7530):E3-4. doi: 10.1038/nature13861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China. ; 1] Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China [2] Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; 1] Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, USA [2] Center for Insect Science, University of Arizona, Tucson, Arizona 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/*classification ; Brain/*anatomy & histology ; Extremities/*innervation ; *Fossils
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-16
    Description: The germinal centre (GC) reaction supports affinity-based B-cell competition and generates high-affinity bone-marrow plasma cells (BMPCs). How follicular T-helper (TFH) cells regulate GC selection is not clear. Using competitive mixed chimaera, we show here that, beyond the role in promoting TFH development, ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) is important for individual B cells to competitively participate in the GC reaction and to develop into BMPCs. Using intravital imaging aided by a calcium reporter, we further show that ICOSL promotes an 'entangled' mode of TFH-B-cell interactions, characterized by brief but extensive surface engagement, productive T-cell calcium spikes, and B-cell acquisition of CD40 signals. Reiterated entanglement promotes outer-zone co-localization of outcompeting GC B cells together with TFH cells, affording the former increased access to T-cell help. ICOSL on GC B cells is upregulated by CD40 signals. Such an intercellular positive feedback between contact-dependent help and ICOSL-controlled entanglement promotes positive selection and BMPC development, as evidenced by observations that higher-affinity B-cell receptor variants are enriched in the ICOSL(high) fraction, that numerically disadvantaged ICOSL-deficient GC B cells or BMPCs exhibit strong affinity compensation in competitive chimaera, and that when GC competition proceeds without ICOSL, selection of high-affinity variants in otherwise normal GC reactions is impaired. By demonstrating entanglement as the basic form of GC TFH-B-cell interactions, identifying ICOSL as a molecular linkage between T-B interactional dynamics and positive selection for high-affinity BMPC formation, our study reveals a pathway by which TFH cells control the quality of long-lived humoral immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Dan -- Xu, Heping -- Shih, Changming -- Wan, Zurong -- Ma, Xiaopeng -- Ma, Weiwei -- Luo, Dan -- Qi, Hai -- England -- Nature. 2015 Jan 8;517(7533):214-8. doi: 10.1038/nature13803. Epub 2014 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084 Beijing, China. ; School of Life Sciences, Tsinghua University, 100084 Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25317561" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/metabolism ; Antibody Formation ; B-Lymphocytes/*cytology/*immunology/metabolism/secretion ; Bone Marrow Cells/cytology/immunology ; Feedback ; Germinal Center/*cytology/*immunology ; Inducible T-Cell Co-Stimulator Ligand/immunology/*metabolism ; Mice ; Plasma Cells/cytology/immunology/secretion ; Signal Transduction/immunology ; T-Lymphocytes, Helper-Inducer/*cytology/*immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-16
    Description: Xiaolei Liu, Xiaowu Gu, Wanshu Ma, Michael Oxendine, Hyea Jin Gil, George E. Davis, Ondine Cleaver, and Guillermo Oliver Although major progress in our understanding of the genes and mechanisms that regulate lymphatic vasculature development has been made, we still do not know how lumen formation and maintenance occurs. Here, we identify the Ras-interacting protein Rasip1 as a key player in this process. We show that lymphatic endothelial cell-specific Rasip1 -deficient mouse embryos exhibit enlarged and blood-filled lymphatics at embryonic day 14.5. These vessels have patent lumens with disorganized junctions. Later on, as those vessels become fragmented and lumens collapse, cell junctions become irregular. In addition, Rasip1 deletion at later stages impairs lymphatic valve formation. We determined that Rasip1 is essential for lymphatic lumen maintenance during embryonic development by regulating junction integrity, as Rasip1 loss results in reduced levels of junction molecules and defective cytoskeleton organization in vitro and in vivo . We determined that Rasip1 regulates Cdc42 activity, as deletion of Cdc42 results in similar phenotypes to those seen following the loss of Rasip1 . Furthermore, ectopic Cdc42 expression rescues the phenotypes in Rasip1 -deficient lymphatic endothelial cells, supporting the suggestion that Rasip1 regulates Cdc42 activity to regulate cell junctions and cytoskeleton organization, which are both activities required for lymphatic lumen maintenance.
    Keywords: Cardiovascular development and regeneration
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-03
    Description: Calcineurin B homologous protein isoform 2 (CHP2), an essential cofactor for Na + /H + exchanger isoform 1 (NHE1), is identified to be expressed in various malignant cell lines. However, the clinical significance and biological role of CHP2 in breast cancer remain to be established. Here, CHP2 was markedly overexpressed in breast cancer cells and clinical tumor specimens. Immunohistochemical analysis revealed that the expression of CHP2 was significantly correlated with patients' clinicopathologic characteristics like clinical stage, and breast cancer patients with high CHP2 expression had shorter overall survival compared with patients with low CHP2 expression. Moreover, it was demonstrated that overexpressing CHP2 significantly enhanced, whereas silencing endogenous CHP2 inhibited, the proliferation and tumorigenicity of breast cancer cells in vitro and in vivo . In addition, overexpression of CHP2 accelerated, whereas inhibition of CHP2 retarded, G 1 –S phase cell-cycle transition in breast cancer cells. Mechanistically, overexpression of CHP2 activated AKT signaling and suppressed the transactivation of the forkhead box O3 (FOXO3/FOXO3a) transcription factor. Implications: This study discovers a previously unrecognized role of CHP2 in the progression of breast cancer and supports the significance of this gene as a novel prognostic biomarker and a potential therapeutic target for breast cancer. Mol Cancer Res; 16(10); 1512–22. ©2018 AACR .
    Print ISSN: 1541-7786
    Electronic ISSN: 1557-3125
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Legg, David A -- Ma, Xiaoya -- Wolfe, Joanna M -- Ortega-Hernandez, Javier -- Edgecombe, Gregory D -- Sutton, Mark D -- England -- Nature. 2011 Aug 10;476(7359):E2-3; discussion E3-4. doi: 10.1038/nature10267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ UK. d.legg10@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21833046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/anatomy & histology/*classification ; Fossils ; *Phylogeny ; Pseudopodia/*classification ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-24
    Description: Projectors are a simple but powerful tool for manipulating and probing quantum systems. For instance, projecting two-qubit systems onto maximally entangled states can enable quantum teleportation. While such projectors have been extensively studied, partially-entangling projectors have been largely overlooked, especially experimentally, despite their important role in quantum foundations and quantum information. Here, we propose a way to project two polarized photons onto any state with a single experimental setup. Our scheme does not require optical nonlinearities or additional photons. Instead, the entangling operation is provided by Hong–Ou–Mandel interference and post-selection. The efficiency of the scheme is between 50% and 100%, depending on the projector. We perform an experimental demonstration and reconstruct the operator describing our measurement using detector tomography. Finally, we flip the usual role of measurement and state in Hardy’s test by performing a partia...
    Electronic ISSN: 1367-2630
    Topics: Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...