Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Publication Date: 2018-03-06
    Description: Cholesterol 25-hydroxylase (CH25H) catalyzes the production of 25-hydroxycholesterol (25-HC), an oxysterol that can play an important role in different biological processes. However, the mechanisms regulating CH25H expression have not been fully elucidated. In this study, we determined that CH25H is highly expressed in mouse liver and peritoneal macrophages. We identified several liver X receptor (LXR) response elements (LXREs) in the human CH25H promoter. In HepG2 cells, activation of LXR by 25-HC or other oxysterols and synthetic ligands [T0901317 (T317) and GW3965] induced CH25H protein expression, which was associated with increased CH25H mRNA expression. 25-HC or T317 activated CH25H transcription in an LXRE-dependent manner. Thus, high-expressing LXRα or LXRβ activated CH25H expression, and the activation was further enhanced by LXR ligands. In contrast, inhibition of LXRα/β expression attenuated 25-HC or T317-induced CH25H expression. Deficiency of interferon expression reduced, but did not block, LXR ligand-induced hepatic CH25H expression. Activation of LXR also substantially induced macrophage CH25H expression. In vivo, administration of GW3965 to mice increased CH25H expression in both liver and peritoneal macrophages. Taken together, our study demonstrates that 25-HC can activate CH25H expression in an LXR-dependent manner, which may be an important mechanism to exert the biological actions of 25-HC.
    Print ISSN: 0022-2275
    Electronic ISSN: 1539-7262
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-27
    Description: Pyrrolizidine alkaloids (PAs) are extensively synthesized by plants, are commonly present in herbs and foodstuffs, and exhibit hepatotoxicity requiring metabolic activation by cytochrome P450 3A to form the electrophilic metabolites-pyrrolic esters. PAs also cause embryo toxicity, but the metabolic profiles of PAs in fetus and placenta have been far from clear. In this study, we determined the basal metabolic activation of retrorsine (RTS) in rat maternal liver, placenta, and fetal liver in vitro and examined the fetal toxicity and bioactivation of RTS in vivo. Detection of microsomal RTS metabolites in vitro showed that the basal metabolic activity of fetal liver and placenta to RTS was much weaker than that of maternal liver. In addition, a higher rate of pyrrolic ester formation was found in normal male fetal liver compared with that of female pups. In vivo exposure to RTS caused fetal growth retardation, as well as placental and fetal liver injury. Little difference in serum RTS was observed in dams and fetuses, but the content of pyrrole-protein adduction in the fetal liver was much lower than that in maternal liver, which was consistent with basal metabolic activity. Unexpectedly, compared with basal metabolism in fetal liver, exposure to RTS during middle and late pregnancy caused an opposite gender difference in RTS metabolism and CYP3A expression in the fetal liver. For the first time, our study showed that RTS can permeate the placenta barrier and entering fetal circulation, whereas the intrauterine pyrrolic metabolite was generated mainly by fetal liver but not transported from the maternal circulation. Induction of CYP3A by RTS was gender-dependent in the fetal liver, which was probably responsible for RTS-induced fetal hepatic injury, especially for female pups.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-09
    Description: Objective Functional gastrointestinal disorders (FGIDs) are diagnosed by the presence of a characteristic set of symptoms. However, the current criteria-based diagnostic approach is to some extent subjective and largely derived from observations in English-speaking Western patients. We aimed to identify latent symptom clusters in Asian patients with FGID. Design 1805 consecutive unselected patients with FGID who presented for primary or secondary care to 11 centres across Asia completed a cultural and linguistic adaptation of the Rome III Diagnostic Questionnaire that was translated to the local languages. Principal components factor analysis with varimax rotation was used to identify symptom clusters. Results Nine symptom clusters were identified, consisting of two oesophageal factors (F6: globus, odynophagia and dysphagia; F9: chest pain and heartburn), two gastroduodenal factors (F5: bloating, fullness, belching and flatulence; F8 regurgitation, nausea and vomiting), three bowel factors (F2: abdominal pain and diarrhoea; F3: meal-related bowel symptoms; F7: upper abdominal pain and constipation) and two anorectal factors (F1: anorectal pain and constipation; F4: diarrhoea, urgency and incontinence). Conclusion We found that the broad categorisation used both in clinical practice and in the Rome system, that is, broad anatomical divisions, and certain diagnoses with long historical records, that is, IBS with diarrhoea, and chronic constipation, are still valid in our Asian societies. In addition, we found a bowel symptom cluster with meal trigger and a gas cluster that suggests a different emphasis in our populations. Future studies to compare a non-Asian cohort and to match to putative pathophysiology will help to verify our findings.
    Keywords: Gut
    Print ISSN: 0017-5749
    Electronic ISSN: 1468-3288
    Topics: Medicine
    Published by BMJ Publishing Group
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-28
    Description: This work evaluated the use of the positron emission tomography (PET)/computed tomography (CT) technique to assess the early therapeutic response and predict the prognosis of patients with radioactive iodine-refractory differentiated thyroid cancer (RAIR-DTC) who underwent apatinib therapy. Standardised uptake value (SUV), metabolic tumour volume (MTV) and total lesion glycolysis (TLG), derived from 18 F-FDG PET/CT and SUV from 68 Ga-NOTA-PRGD2 PET/CT were evaluated. Tumour response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Sixteen of 20 patients achieved partial response (PR) and four of 20 had stable disease (SD) after apatinib therapy. Six progression-free survival (PFS) events occurred. A strong correlation was observed between the best change in the sum of the longest diameters of target lesions (CT%) and 18 F-FDG PET/CT indices after the completion of the first treatment cycle (MTV% ( P = 0.0019), TLG% ( P = 0.0021) and SUVmax% ( P = 0.0443)). A significant difference in PFS was observed between patients with MTV% 〈–45% and ≥–45% ( P = 0.0019) and between patients with TLG% 〈–80% and ≥–80% ( P = 0.0065). Ten of 11 patients presented a decrease in SUVmax on 68 Ga-NOTA-PRGD2 PET/CT after two cycles of apatinib therapy and showed PR, whereas one patient presenting an increase in SUVmax only showed SD as the best response. When a cut-off value of the target/background ratio at –20% was used, two PFS curves showed a significant difference ( P = 0.0016). Hence, early assessment by 18 F-FDG and 68 Ga-NOTA-PRGD2 PET/CT was effective in the prediction and evaluation of RAIR-DTC treated with apatinib.
    Print ISSN: 1351-0088
    Electronic ISSN: 1479-6821
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-23
    Description: Recent studies revealed that acetylation is a widely used protein modification in prokaryotic organisms. The major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB have been found to be involved in basic physiological processes, such as primary metabolism, chemotaxis, and stress responses, in Escherichia coli and Salmonella . However, little is known about protein acetylation modifications in Yersinia pestis , a lethal pathogen responsible for millions of human deaths in three worldwide pandemics. Here we found that Yp_0659 and Yp_1760 of Y. pestis encode the major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB, respectively, which can acetylate and deacetylate PhoP enzymatically in vitro . Protein acetylation impairment in cobB and yfiQ mutants greatly decreased bacterial tolerance to cold, hot, high-salt, and acidic environments. Our comparative transcriptomic data revealed that the strongly decreased tolerance to stress stimuli was probably related to downregulation of the genes encoding the heat shock proteins (HtpG, HslV, HslR, and IbpA), cold shock proteins (CspC and CspA1), and acid resistance proteins (HdeB and AdiA). We found that the reversible acetylation mediated by CobB and YfiQ conferred attenuation of virulence, probably partially due to the decreased expression of the psaABCDEF operon, which encodes Psa fimbriae that play a key role in virulence of Y. pestis . This is the first report, to our knowledge, on the roles of protein acetylation modification in stress responses, biofilm formation, and virulence of Y. pestis .
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-12
    Description: Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled 〉94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myburg, Alexander A -- Grattapaglia, Dario -- Tuskan, Gerald A -- Hellsten, Uffe -- Hayes, Richard D -- Grimwood, Jane -- Jenkins, Jerry -- Lindquist, Erika -- Tice, Hope -- Bauer, Diane -- Goodstein, David M -- Dubchak, Inna -- Poliakov, Alexandre -- Mizrachi, Eshchar -- Kullan, Anand R K -- Hussey, Steven G -- Pinard, Desre -- van der Merwe, Karen -- Singh, Pooja -- van Jaarsveld, Ida -- Silva-Junior, Orzenil B -- Togawa, Roberto C -- Pappas, Marilia R -- Faria, Danielle A -- Sansaloni, Carolina P -- Petroli, Cesar D -- Yang, Xiaohan -- Ranjan, Priya -- Tschaplinski, Timothy J -- Ye, Chu-Yu -- Li, Ting -- Sterck, Lieven -- Vanneste, Kevin -- Murat, Florent -- Soler, Marcal -- Clemente, Helene San -- Saidi, Naijib -- Cassan-Wang, Hua -- Dunand, Christophe -- Hefer, Charles A -- Bornberg-Bauer, Erich -- Kersting, Anna R -- Vining, Kelly -- Amarasinghe, Vindhya -- Ranik, Martin -- Naithani, Sushma -- Elser, Justin -- Boyd, Alexander E -- Liston, Aaron -- Spatafora, Joseph W -- Dharmwardhana, Palitha -- Raja, Rajani -- Sullivan, Christopher -- Romanel, Elisson -- Alves-Ferreira, Marcio -- Kulheim, Carsten -- Foley, William -- Carocha, Victor -- Paiva, Jorge -- Kudrna, David -- Brommonschenkel, Sergio H -- Pasquali, Giancarlo -- Byrne, Margaret -- Rigault, Philippe -- Tibbits, Josquin -- Spokevicius, Antanas -- Jones, Rebecca C -- Steane, Dorothy A -- Vaillancourt, Rene E -- Potts, Brad M -- Joubert, Fourie -- Barry, Kerrie -- Pappas, Georgios J -- Strauss, Steven H -- Jaiswal, Pankaj -- Grima-Pettenati, Jacqueline -- Salse, Jerome -- Van de Peer, Yves -- Rokhsar, Daniel S -- Schmutz, Jeremy -- England -- Nature. 2014 Jun 19;510(7505):356-62. doi: 10.1038/nature13308. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa. ; 1] Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil [2] Programa de Ciencias Genomicas e Biotecnologia - Universidade Catolica de Brasilia SGAN 916, 70790-160 Brasilia, Brazil. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA. ; Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Laboratorio de Bioinformatica, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; INRA/UBP UMR 1095, 5 Avenue de Beaulieu, 63100 Clermont Ferrand, France. ; Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France. ; 1] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver V6T 1Z4, Canada. ; Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany. ; 1] Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany [2] Department of Bioinformatics, Institute for Computer Science, University of Duesseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany. ; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA [2] Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA. ; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Laboratorio de Biologia Evolutiva Teorica e Aplicada, Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil [2] Departamento de Biotecnologia, Escola de Engenharia de Lorena-Universidade de Sao Paulo (EEL-USP), CP116, 12602-810, Lorena-SP, Brazil [3] Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Research School of Biology, Australian National University, Canberra 0200, Australia. ; 1] Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France [2] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [3] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; 1] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [2] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA. ; Dep. de Fitopatologia, Universidade Federal de Vicosa, Vicosa 36570-000, Brazil. ; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil. ; Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. ; GYDLE, 1363 av. Maguire, suite 301, Quebec, Quebec G1T 1Z2, Canada. ; Department of Environment and Primary Industries, Victorian Government, Melbourne, Victoria 3085, Australia. ; Melbourne School of Land and Environment, University of Melbourne, Melbourne, Victoria 3010, Australia. ; School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia. ; 1] School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia [2] Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Departamento de Biologia Celular, Universidade de Brasilia, Brasilia 70910-900, Brazil. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919147" target="_blank"〉PubMed〈/a〉
    Keywords: Eucalyptus/classification/*genetics ; Evolution, Molecular ; Genetic Variation ; *Genome, Plant ; Inbreeding ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-21
    Description: To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343047/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343047/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Yong -- Ma, Zhihai -- Kim, Bong-Hyun -- Wu, Weisheng -- Cayting, Philip -- Boyle, Alan P -- Sundaram, Vasavi -- Xing, Xiaoyun -- Dogan, Nergiz -- Li, Jingjing -- Euskirchen, Ghia -- Lin, Shin -- Lin, Yiing -- Visel, Axel -- Kawli, Trupti -- Yang, Xinqiong -- Patacsil, Dorrelyn -- Keller, Cheryl A -- Giardine, Belinda -- Mouse ENCODE Consortium -- Kundaje, Anshul -- Wang, Ting -- Pennacchio, Len A -- Weng, Zhiping -- Hardison, Ross C -- Snyder, Michael P -- 1U54HG00699/HG/NHGRI NIH HHS/ -- 3RC2HG005602/HG/NHGRI NIH HHS/ -- 5U54HG006996/HG/NHGRI NIH HHS/ -- R01 DK065806/DK/NIDDK NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 GM083337/GM/NIGMS NIH HHS/ -- R01 HG003988/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007348/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01DK065806/DK/NIDDK NIH HHS/ -- R01HG003988/HG/NHGRI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- RC2 HG005573/HG/NHGRI NIH HHS/ -- RC2 HG005602/HG/NHGRI NIH HHS/ -- RC2HG005573/HG/NHGRI NIH HHS/ -- U01 DE024427/DE/NIDCR NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54 HG006998/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54HG006997/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):371-5. doi: 10.1038/nature13985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, California 94305, USA. ; Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; 1] Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] BRCF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan 48105, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Department of Genetics, Stanford University, Stanford, California 94305, USA [2] Division of Cardiovascular Medicine, Stanford University, Stanford, California 94304, USA. ; 1] Department of Genetics, Stanford University, Stanford, California 94305, USA [2] Department of Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, California 94701, USA [2] Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA [3] School of Natural Sciences, University of California, Merced, California 95343, USA. ; 1] Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, California 94701, USA [2] Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409826" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/genetics/metabolism ; Conserved Sequence/*genetics ; Enhancer Elements, Genetic/genetics ; Genome/*genetics ; *Genomics ; Humans ; Mice ; Polymorphism, Single Nucleotide/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Xueming -- Minton, Timothy K -- Zhang, Dong Hui -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1650-1. doi: 10.1126/science.1223680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. xmyang@dicp.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745412" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shu, Shu-Sen -- Jiang, Wan-Sheng -- Whitten, Tony -- Yang, Jun-Xing -- Chen, Xiao-Yong -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):272. doi: 10.1126/science.340.6130.272-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599459" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*physiology ; *Biodiversity ; *Caves ; China ; Climate Change ; Cyprinidae/physiology ; *Disasters ; *Droughts ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-06
    Description: The postnatal coronary vessels have been viewed as developing through expansion of vessels formed during the fetal period. Using genetic lineage tracing, we found that a substantial portion of postnatal coronary vessels arise de novo in the neonatal mouse heart, rather than expanding from preexisting embryonic vasculature. Our data show that lineage conversion of neonatal endocardial cells during trabecular compaction generates a distinct compartment of the coronary circulation located within the inner half of the ventricular wall. This lineage conversion occurs within a brief period after birth and provides an efficient means of rapidly augmenting the coronary vasculature. This mechanism of postnatal coronary vascular growth provides avenues for understanding and stimulating cardiovascular regeneration following injury and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275002/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275002/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tian, Xueying -- Hu, Tianyuan -- Zhang, Hui -- He, Lingjuan -- Huang, Xiuzhen -- Liu, Qiaozhen -- Yu, Wei -- He, Liang -- Yang, Zhen -- Yan, Yan -- Yang, Xiao -- Zhong, Tao P -- Pu, William T -- Zhou, Bin -- 2 R01 HL094683/HL/NHLBI NIH HHS/ -- R01 HL094683/HL/NHLBI NIH HHS/ -- R01 HL116461/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):90-4. doi: 10.1126/science.1251487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. ; Zhongshan Hospital, Fudan University, Shanghai 200032, China. ; State Key Laboratory of Proteomics, Institute of Biotechnology, Beijing 100071, China. ; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA. Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA. ; Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. zhoubin@sibs.ac.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/genetics ; Coronary Vessels/*growth & development/physiology ; Endocardium/cytology/physiology ; Heart/*growth & development/physiology ; Mice ; Myocardium/cytology ; Neovascularization, Physiologic/genetics/*physiology ; Regeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...