Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-01-21
    Description: When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cang, Hu -- Labno, Anna -- Lu, Changgui -- Yin, Xiaobo -- Liu, Ming -- Gladden, Christopher -- Liu, Yongmin -- Zhang, Xiang -- England -- Nature. 2011 Jan 20;469(7330):385-8. doi: 10.1038/nature09698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248848" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum/chemistry ; *Electromagnetic Fields ; Fluorescence ; Fluorescent Dyes/analysis/chemistry ; *Hot Temperature ; Luminescent Measurements/*methods ; Metal Nanoparticles/*chemistry ; Microscopy, Fluorescence/*methods ; Molecular Imaging/*methods ; Motion ; Quartz ; Silver/chemistry ; Surface Properties
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-10
    Description: Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1 GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6 microm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25 microm(2), which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ming -- Yin, Xiaobo -- Ulin-Avila, Erick -- Geng, Baisong -- Zentgraf, Thomas -- Ju, Long -- Wang, Feng -- Zhang, Xiang -- England -- Nature. 2011 Jun 2;474(7349):64-7. doi: 10.1038/nature10067. Epub 2011 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NSF Nano-scale Science and Engineering Center, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21552277" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-03
    Description: DNA methylation is an important epigenetic modification. Ten-eleven translocation (TET) proteins are involved in DNA demethylation through iteratively oxidizing 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Here we show that human TET1 and TET2 are more active on 5mC-DNA than 5hmC/5fC-DNA substrates. We determine the crystal structures of TET2-5hmC-DNA and TET2-5fC-DNA complexes at 1.80 A and 1.97 A resolution, respectively. The cytosine portion of 5hmC/5fC is specifically recognized by TET2 in a manner similar to that of 5mC in the TET2-5mC-DNA structure, and the pyrimidine base of 5mC/5hmC/5fC adopts an almost identical conformation within the catalytic cavity. However, the hydroxyl group of 5hmC and carbonyl group of 5fC face towards the opposite direction because the hydroxymethyl group of 5hmC and formyl group of 5fC adopt restrained conformations through forming hydrogen bonds with the 1-carboxylate of NOG and N4 exocyclic nitrogen of cytosine, respectively. Biochemical analyses indicate that the substrate preference of TET2 results from the different efficiencies of hydrogen abstraction in TET2-mediated oxidation. The restrained conformation of 5hmC and 5fC within the catalytic cavity may prevent their abstractable hydrogen(s) adopting a favourable orientation for hydrogen abstraction and thus result in low catalytic efficiency. Our studies demonstrate that the substrate preference of TET2 results from the intrinsic value of its substrates at their 5mC derivative groups and suggest that 5hmC is relatively stable and less prone to further oxidation by TET proteins. Therefore, TET proteins are evolutionarily tuned to be less reactive towards 5hmC and facilitate the generation of 5hmC as a potentially stable mark for regulatory functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Lulu -- Lu, Junyan -- Cheng, Jingdong -- Rao, Qinhui -- Li, Ze -- Hou, Haifeng -- Lou, Zhiyong -- Zhang, Lei -- Li, Wei -- Gong, Wei -- Liu, Mengjie -- Sun, Chang -- Yin, Xiaotong -- Li, Jie -- Tan, Xiangshi -- Wang, Pengcheng -- Wang, Yinsheng -- Fang, Dong -- Cui, Qiang -- Yang, Pengyuan -- He, Chuan -- Jiang, Hualiang -- Luo, Cheng -- Xu, Yanhui -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China. ; MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, USA. ; Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524525" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/analogs & derivatives/metabolism ; DNA/*chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Oxidation-Reduction ; Protein Binding ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 A resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Xue -- Wang, Ling -- Li, Jie -- Ding, Zhanyu -- Xiao, Jianxiong -- Yin, Xiaotong -- He, Shuang -- Shi, Pan -- Dong, Liping -- Li, Guohong -- Tian, Changlin -- Wang, Jiawei -- Cong, Yao -- Xu, Yanhui -- England -- Nature. 2015 Jan 29;517(7536):640-4. doi: 10.1038/nature13899. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China [2] State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China [2] National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China [3] School of Life Sciences, University of Science and Technology of China, Hefei 230026, China. ; 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] University of Chinese Academy of Science, Beijing 100049, China. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*antagonists & ; inhibitors/*chemistry/*metabolism ; DNA Methylation ; Enzyme Activation ; Histones/*chemistry/*metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-07
    Keywords: Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-12-07
    Description: Developing alternative paradigms of electronics beyond silicon technology requires the exploration of fundamentally new physical mechanisms, such as the valley-specific phenomena in hexagonal two-dimensional materials. We realize ballistic valley Hall kink states in bilayer graphene and demonstrate gate-controlled current transmission in a four-kink router device. The operations of a waveguide, a valve, and a tunable electron beam splitter are demonstrated. The valley valve exploits the valley-momentum locking of the kink states and reaches an on/off ratio of 8 at zero magnetic field. A magnetic field enables a full-range tunable coherent beam splitter. These results pave a path to building a scalable, coherent quantum transportation network based on the kink states.
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-03
    Description: The translational symmetry breaking of a crystal at its surface may form two-dimensional (2D) electronic states. We observed one-dimensional nonlinear optical edge states of a single atomic membrane of molybdenum disulfide (MoS2), a transition metal dichalcogenide. The electronic structure changes at the edges of the 2D crystal result in strong resonant nonlinear optical susceptibilities, allowing direct optical imaging of the atomic edges and boundaries of a 2D material. Using the symmetry of the nonlinear optical responses, we developed a nonlinear optical imaging technique that allows rapid and all-optical determination of the crystal orientations of the 2D material at a large scale. Our technique provides a route toward understanding and making use of the emerging 2D materials and devices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Xiaobo -- Ye, Ziliang -- Chenet, Daniel A -- Ye, Yu -- O'Brien, Kevin -- Hone, James C -- Zhang, Xiang -- New York, N.Y. -- Science. 2014 May 2;344(6183):488-90. doi: 10.1126/science.1250564.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NSF Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786072" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-09
    Description: Systemic lupus erythematosus (SLE) is a common prototypic autoimmune disease with substantial genetic predispositions. It is more prevalent in Asians than in Caucasians. Genome wide association studies (GWAS) have discovered more than 80 genetic loci for the risk of SLE 1 , which improve the understanding of SLE etiology and provide potential therapeutic targets. However, each GWAS finding only confers a relatively small effect, and they in total cannot fully explain SLE heritability, suggesting more genetic variants are yet to be discovered. This article is protected by copyright. All rights reserved.
    Print ISSN: 0007-0963
    Electronic ISSN: 1365-2133
    Topics: Medicine
    Published by Wiley-Blackwell
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-28
    Description: Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy ( approximately 0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many-electron effects in this two-dimensional gapped system, but also holds potential for the device application of TMDC monolayers and their heterostructures in computing, communication and bio-sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Ziliang -- Cao, Ting -- O'Brien, Kevin -- Zhu, Hanyu -- Yin, Xiaobo -- Wang, Yuan -- Louie, Steven G -- Zhang, Xiang -- England -- Nature. 2014 Sep 11;513(7517):214-8. doi: 10.1038/nature13734. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA [2]. ; 1] Department of Physics, University of California, Berkeley, California 94720, USA [2] Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA [3]. ; NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA. ; 1] Department of Physics, University of California, Berkeley, California 94720, USA [2] Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA. ; 1] NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA [2] Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA [3] Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia [4] Kavli Energy NanoSciences Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94704, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162523" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-23
    Description: The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Xiaobo -- Ye, Ziliang -- Rho, Junsuk -- Wang, Yuan -- Zhang, Xiang -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1405-7. doi: 10.1126/science.1231758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation Nanoscale Science and Engineering Center, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520105" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...