Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2018-05-02
    Description: Background: In the present study, we assessed the clinical value of circulating tumor cells (CTC) with stem-like phenotypes for diagnosis, prognosis, and surveillance in hepatitis B virus (HBV)–related hepatocellular carcinoma (HCC) by an optimized qPCR-based detection platform. Methods: Differing subsets of CTCs were investigated, and a multimarker diagnostic CTC panel was constructed in a multicenter patient study with independent validation (total n = 1,006), including healthy individuals and patients with chronic hepatitis B infection (CHB), liver cirrhosis (LC), benign hepatic lesion (BHL), and HBV-related HCC, with area under the receiver operating characteristic curve (AUC-ROC) reflecting diagnostic accuracy. The role of the CTC panel in treatment response surveillance and its prognostic significance were further investigated. Results: The AUC of the CTC panel was 0.88 in the training set [sensitivity = 72.5%, specificity = 95.0%, positive predictive value (PPV) = 92.4, negative predictive value (NPV) = 77.8] and 0.93 in the validation set (sensitivity = 82.1%, specificity = 94.2%, PPV = 89.9, NPV = 89.3). This panel performed equally well in detecting early-stage and α-fetoprotein–negative HCC, as well as differentiating HCC from CHB, LC, and BHL. The CTC load was decreased significantly after tumor resection, and patients with persistently high CTC load showed a propensity of tumor recurrence after surgery. The prognostic significance of the CTC panel in predicting tumor recurrence was further confirmed [training: HR = 2.692; 95% confidence interval (CI), 1.617–4.483; P 〈 0.001; and validation: HR = 3.127; 95% CI, 1.360–7.190; P = 0.007]. Conclusions: Our CTC panel showed high sensitivity and specificity in HCC diagnosis and could be a real-time parameter for risk prediction and treatment monitoring, enabling early decision-making to tailor effective antitumor strategies. Clin Cancer Res; 24(9); 2203–13. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-02
    Description: Purpose: We established a CT-derived approach to achieve accurate progression-free survival (PFS) prediction to EGFR tyrosine kinase inhibitors (TKI) therapy in multicenter, stage IV EGFR -mutated non–small cell lung cancer (NSCLC) patients. Experimental Design: A total of 1,032 CT-based phenotypic characteristics were extracted according to the intensity, shape, and texture of NSCLC pretherapy images. On the basis of these CT features extracted from 117 stage IV EGFR -mutant NSCLC patients, a CT-based phenotypic signature was proposed using a Cox regression model with LASSO penalty for the survival risk stratification of EGFR-TKI therapy. The signature was validated using two independent cohorts (101 and 96 patients, respectively). The benefit of EGFR-TKIs in stratified patients was then compared with another stage-IV EGFR -mutant NSCLC cohort only treated with standard chemotherapy (56 patients). Furthermore, an individualized prediction model incorporating the phenotypic signature and clinicopathologic risk characteristics was proposed for PFS prediction, and also validated by multicenter cohorts. Results: The signature consisted of 12 CT features demonstrated good accuracy for discriminating patients with rapid and slow progression to EGFR-TKI therapy in three cohorts (HR: 3.61, 3.77, and 3.67, respectively). Rapid progression patients received EGFR TKIs did not show significant difference with patients underwent chemotherapy for progression-free survival benefit ( P = 0.682). Decision curve analysis revealed that the proposed model significantly improved the clinical benefit compared with the clinicopathologic-based characteristics model ( P 〈 0.0001). Conclusions: The proposed CT-based predictive strategy can achieve individualized prediction of PFS probability to EGFR-TKI therapy in NSCLCs, which holds promise of improving the pretherapy personalized management of TKIs. Clin Cancer Res; 24(15); 3583–92. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-02
    Description: Chronic hyperlipidemia causes the dysfunction of pancreatic β-cells, such as apoptosis and impaired insulin secretion, which are aggravated in the presence of hyperglycemia. The underlying mechanisms, such as endoplasmic reticulum (ER) stress, oxidative stress and metabolic disorders, have been reported before; however, the time sequence of these molecular events is not fully understood. Here, using isobaric labeling-based mass spectrometry, we investigated the dynamic proteomes of INS-1 cells exposed to high palmitate in the absence and presence of high glucose. Using bioinformatics analysis of differentially expressed proteins, including the time-course expression pattern, protein-protein interaction, gene set enrichment and KEGG pathway analysis, we analyzed the dynamic features of previously reported and newly identified lipotoxicity- and glucolipotoxicity-related molecular events in more detail. Our temporal data highlight cholesterol metabolism occurring at 4 h, earlier than fatty acid metabolism that started at 8 h and likely acting as an early toxic event highly associated with ER stress induced by palmitate. Interestingly, we found that the proliferation of INS-1 cells was significantly increased at 48 h by combined treatment of palmitate and glucose. Moreover, benefit from the time-course quantitative data, we identified and validated two new molecular targets: Setd8 for cell replication and Rhob for apoptosis, demonstrating that our temporal dataset serves as a valuable resource to identify potential candidates for mechanistic studies of lipotoxicity and glucolipotoxicity in pancreatic β-cells.
    Print ISSN: 1535-9476
    Electronic ISSN: 1535-9484
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-01
    Description: Background/Aim: One of the major problems in breast cancer treatment is pharmacoresistance. Therefore, exploration of treatment alternatives is of clinical relevance. The present work focused on tumor cell-inhibiting effects of a combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and all trans retinoic acid (ATRA) in breast cancer cells. Materials and Methods: Breast cancer cell lines (BT-20, BT-474, MDA-MB-231, MDA-MB-436, MDA-MB-453, MCF-7, SKBR3, T47D, ZR-75-1) and the mammary epithelial cell line MCF-10A were treated with TRAIL and ATRA alone and in combination. Cell viability was assessed via 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay, the potential of cell colony formation via clonogenic assay, cell death induction via cell-cycle analysis by fluorescence-activated cell sorting (FACS), terminal deoxynucleotidyltransferase-mediated UTP nick end labeling (TUNEL) assay and Cell death detection ELISA PLUS , expression of apoptosis and TRAIL pathway proteins via western blot and cell surface expression of TRAIL receptor 1 (DR4) via FACS analysis. Results: TRAIL and ATRA evoked synergistic inhibition of breast cancer cell viability based on cytostatic and cytotoxic mechanisms. This correlated with augmented fragmentation of nuclear DNA, up-regulation of TRAIL receptor, down-regulation of cyclin D1 and enhancement of caspase activity. MCF-10A cells were merely slightly susceptible to TRAIL and ATRA. Conclusion: The cytostatic and cytotoxic effects of the combination of TRAIL and ATRA are tumor cell-selective.
    Print ISSN: 0250-7005
    Electronic ISSN: 1791-7530
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-30
    Description: As a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing an ac102 knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner. IMPORTANCE Actin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the host actin polymerization machinery to assist in virus propagation. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) induces actin polymerization in host cells. P78/83, a viral NPF, is responsible for this process. Previously, we identified that BV/ODV-C42 (C42) binds to P78/83 and protects it from degradation. In this report, we determined that another viral protein, Ac102, is involved in modulating C42 ubiquitination and, consequently, ensures P78/83 activity as an NPF to initiate actin polymerization. This regulatory cascade represents a novel mechanism by which a virus can harness the cellular actin cytoskeleton to assist in viral propagation.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-12
    Description: Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target–inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.
    Keywords: Genetics, Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-28
    Description: Objectives We validate a machine learning-based sepsis-prediction algorithm ( InSight ) for the detection and prediction of three sepsis-related gold standards, using only six vital signs. We evaluate robustness to missing data, customisation to site-specific data using transfer learning and generalisability to new settings. Design A machine-learning algorithm with gradient tree boosting. Features for prediction were created from combinations of six vital sign measurements and their changes over time. Setting A mixed-ward retrospective dataset from the University of California, San Francisco (UCSF) Medical Center (San Francisco, California, USA) as the primary source, an intensive care unit dataset from the Beth Israel Deaconess Medical Center (Boston, Massachusetts, USA) as a transfer-learning source and four additional institutions’ datasets to evaluate generalisability. Participants 684 443 total encounters, with 90 353 encounters from June 2011 to March 2016 at UCSF. Interventions None. Primary and secondary outcome measures Area under the receiver operating characteristic (AUROC) curve for detection and prediction of sepsis, severe sepsis and septic shock. Results For detection of sepsis and severe sepsis, InSight achieves an AUROC curve of 0.92 (95% CI 0.90 to 0.93) and 0.87 (95% CI 0.86 to 0.88), respectively. Four hours before onset, InSight predicts septic shock with an AUROC of 0.96 (95% CI 0.94 to 0.98) and severe sepsis with an AUROC of 0.85 (95% CI 0.79 to 0.91). Conclusions InSight outperforms existing sepsis scoring systems in identifying and predicting sepsis, severe sepsis and septic shock. This is the first sepsis screening system to exceed an AUROC of 0.90 using only vital sign inputs. InSight is robust to missing data, can be customised to novel hospital data using a small fraction of site data and retains strong discrimination across all institutions.
    Keywords: Open access, Health informatics
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-28
    Description: Cefotaxime is the first-line treatment for meningitis in neonates and young infants. However, limited data on cefotaxime cerebrospinal fluid (CSF) concentrations in neonates and young infants were available. The aim of the present study was to evaluate the penetration of cefotaxime into CSF in neonates and young infants. Blood and CSF samples were collected from neonates and young infants treated with cefotaxime using an opportunistic pharmacokinetic sampling strategy, and concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The analysis was performed using NONMEM and R software. Thirty neonates and young infants (postmenstrual age range, 25.4 to 47.4 weeks) were included. A total of 67 plasma samples and 30 CSF samples were available for analysis. Cefotaxime plasma and CSF concentrations ranged from 2.30 to 175.42 mg/liter and from 0.39 to 25.38 mg/liter, respectively. The median ratio of the CSF concentration to the plasma concentration was 0.28 (range, 0.06 to 0.76). Monte Carlo simulation demonstrated that 88.4% and 63.9% of hypothetical neonates treated with 50 mg/kg of body weight three times a day (TID) would reach the pharmacodynamic target (the percentage of the dosing interval that the free antimicrobial drug concentration remains above the MIC, 70%) using the standard EUCAST MIC susceptibility breakpoints of 2 mg/liter and 4 mg/liter, respectively. The penetration of cefotaxime into the CSF of neonates and young infants was evaluated using an opportunistic sampling approach. A dosage regimen of 50 mg/kg TID could cover the most causative pathogens with MICs of 〈2 mg/liter. Individual dosage adaptation was required for more resistant bacterial strains, such as Staphylococcus aureus .
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA (1) . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress(2,3) and metabolic disorders(4-6). How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m(5)C, m(2)G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m(5)C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.
    Type of Publication: Journal article published
    PubMed ID: 29695786
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-14
    Description: NF-kappaB is crucial for innate immune defence against microbial infection. Inhibition of NF-kappaB signalling has been observed with various bacterial infections. The NF-kappaB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-kappaB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-kappaB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-kappaB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-kappaB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-kappaB signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Li -- Ding, Xiaojun -- Cui, Jixin -- Xu, Hao -- Chen, Jing -- Gong, Yi-Nan -- Hu, Liyan -- Zhou, Yan -- Ge, Jianning -- Lu, Qiuhe -- Liu, Liping -- Chen, She -- Shao, Feng -- England -- Nature. 2011 Dec 11;481(7380):204-8. doi: 10.1038/nature10690.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158122" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Bacterial Secretion Systems ; Cysteine/*metabolism ; Enteropathogenic Escherichia coli/metabolism/pathogenicity ; Escherichia coli Proteins/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/chemistry/*metabolism ; MAP Kinase Kinase Kinases/metabolism ; Methionine/analogs & derivatives/metabolism ; Methylation ; Methyltransferases/metabolism ; NF-kappa B/*antagonists & inhibitors/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction ; Substrate Specificity ; TNF Receptor-Associated Factor 6 ; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism ; Ubiquitin/*metabolism ; Virulence Factors/*metabolism ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...