Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; carcinoma ; CELL ; GENE ; GENES ; ACTIVATION ; MECHANISM ; CONTRAST ; mechanisms ; SEQUENCE ; SEQUENCES ; ALPHA ; ACID ; gene expression ; PROMOTER ; prostate cancer ; oligonucleotides ; CANCER-CELLS ; CARCINOMA-CELLS ; EPITHELIAL-CELLS ; FATTY-ACIDS ; adenocarcinoma ; PPAR-GAMMA ; BINDING PROTEIN ; PROSTATE-CANCER CELLS ; gene regulation ; FRAGMENT ; ANDROGEN ; NUCLEAR RECEPTOR ; 15-lipoxygenase-2 ; peroxisome proliferator-activated receptor gamma ; ROR-ALPHA
    Abstract: An inverse relationship exists between the expression of 15-lipoxygenase-2 (15-LOX-2) and peroxisome proliferator-activated receptor c (PPARc) in normal prostate epithelial cells (PrECs) compared with their expression in prostate carcinoma cells (PC-3). The reason for this difference, however, is unknown. We hypothesized that this inverse expression partly involves the 15-LOX-2 promoter and 15-S-hydroxyeicosatetraenoic acid (15-(S)HETE), a product of 15- LOX-2 that binds to PPARc. We identified an active steroid nuclear receptor half-site present in the 15-LOX-2 promoter fragment F-5 (-618/+177) that can interact with PPARc. After forced expression of wild-type PPARc, 15-(S)-HETE (1 mu M) decreased F-5 reporter activity in PrECs whereas forced expression of 15-LOX-2 resulted in 15-(S)-HETE production which enhanced F-5 activity in PC-3. In contrast, the expression of dominant-negative PPARc reversed the transcriptional activation of F-5 by enhancing it 202-fold in PrEC or suppressing it in PC-3; the effect in PC-3 was positively increased 150-fold in the presence of 15-(S)-HETE (1 mu M). Peroxisome proliferator-activated receptor c interacted with 15-LOX-2 promoter sequences in pulldown experiments using biotinylated 15-LOX-2 (-560/-596 bp) oligonucleotides. In gelshift analyses PPARc and orphan receptor ROR alpha were shown to interact with the F-5 fragment in PC-3 cells. These data suggest that crosstalk mechanisms exist between the 15-LOX-2 gene and PPARc to counterbalance expression and help explain the inverse relationship of these genes in normal versus cancer cells
    Type of Publication: Journal article published
    PubMed ID: 16682954
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; LUNG ; PHASE-I ; lung cancer ; LUNG-CANCER ; EPIDEMIOLOGY ; CARCINOGENESIS ; ASSOCIATION ; polymorphism ; SUSCEPTIBILITY ; METABOLITES ; PROMOTER ; AGE ; genetics ; REDUCED RISK ; smoking ; DATABASE ; REGION ; heredity ; DEFICIENCY ; VARIANT ; CARCINOGEN ; METAANALYSIS ; INTERVAL ; ENZYME ; analysis ; PHASE ; MISSENSE MUTATION ; GENOTYPE ; USA ; female ; Male ; odds ratio ; E ; Phase I ; MPO ; cooperative studies ; metabolic gene polymorphisms ; ACID RESPONSE ELEMENT ; DNA ADDUCT LEVELS ; HUMAN SKIN FIBROBLASTS ; HYPOCHLOROUS ACID
    Abstract: Myeloperoxidase is a phase I metabolic enzyme that converts the metabolites of benzo[a]pyrene from tobacco smoke into highly reactive epoxides. A polymorphism in the promoter region of myeloperoxidase (463G -〉 A) has been found to be inversely associated with lung cancer; differences in the association with age and gender have been suggested. We conducted a pooled analysis of individual data from 10 studies (3688 cases and 3874 controls) from the Genetic Susceptibility to Environmental Carcinogens database. The odds ratio for lung cancer was 0.88 (95% confidence interval: 0.80-0.97) for the AG variant of myeloperoxidase G-463A polymorphism, and 0.71 (95% confidence interval: 0.57-0.88) for the AA variant after adjusting for smoking, age, gender, and ethnicity. The inverse association between lung cancer and myeloperoxidase G-463A polymorphism was equally found in males and females (odds ratio for the AA genotype 0.73 [95% confidence interval: 0.56-0.96] and 0.67 [95% confidence interval: 0.46-0.98], respectively), without differences in the association according to age in the two genders. The myeloperoxicase G-463A polymorphism was significantly protective in "ever" smokers but not in "never" smokers. Myeloperoxidase is a key enzyme in tobacco-induced carcinogenesis
    Type of Publication: Journal article published
    PubMed ID: 17304047
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; CELL ; LUNG ; PATHWAY ; PATHWAYS ; lung cancer ; LUNG-CANCER ; EPIDEMIOLOGY ; RISK ; GENE ; GENES ; validation ; DNA ; BIOMARKERS ; cell cycle ; CELL-CYCLE ; SEQUENCE ; ASSOCIATION ; SUSCEPTIBILITY ; SUSCEPTIBILITY LOCUS ; VARIANTS ; HEALTH ; NUMBER ; REPAIR ; smoking ; p53 ; cancer risk ; FRANCE ; genotyping ; DNA repair ; TP53 ; ONCOLOGY ; VARIANT ; METAANALYSIS ; XRCC1 ; SINGLE-NUCLEOTIDE POLYMORPHISMS ; biomarker ; analysis ; methods ; DNA repair genes ; pooled analysis ; USA ; cancer research ; CANCER-RISK ; OGG1 ; NOV ; GENOME-WIDE ASSOCIATION ; association study ; XRCC3 ; discussion ; POOLED-ANALYSIS ; CONSORTIUM ; genetic variants ; GENOME-WIDE ; APEX1
    Abstract: Background: The International Lung Cancer Consortium was established in 2004. To clarify the role of DNA repair genes in lung cancer susceptibility, we conducted a pooled analysis of genetic variants in DNA repair pathways, whose associations have been investigated by at least 3 individual studies. Methods: Data from 14 studies were pooled for 18 sequence variants in 12 DNA repair genes, including APEX1, OGG1, XRCC1, XRCC2, XRCC3, ERCC1, XPD, XPF, XPG, XPA, MGMT, and TP53. The total number of subjects included in the analysis for each variant ranged from 2,073 to 13,955 subjects. Results: Four of the variants were found to be weakly associated with lung cancer risk with borderline significance: these were XRCC3 T241M [heterozygote odds ratio (OR), 0.89; 95% confidence interval (95% CI), 0.79-0.99 and homozygote OR, 0.84; 95% Cl, 0.71-1.00] based on 3,467 cases and 5,021 controls from 8 studies, XPD K751Q (heterozygote OR, 0.99; 95% Cl, 0.89-1.10 and homozygote OR, 1.19; 95% CI, 1.02-1.39) based on 6,463 cases and 6,603 controls from 9 studies, and TP53 R72P (heterozygote OR, 1.14; 95% Cl, 1.00-1.29 and homozygote OR, 1.20; 95% CI, 1.02-1.42) based on 3,610 cases and 5,293 controls from 6 studies. OGG1 S326C homozygote was suggested to be associated with lung cancer risk in Caucasians (homozygote OR, 1.34; 95% CI, 1.01-1.79) based on 2,569 cases and 4,178 controls from 4 studies but not in Asians. The other 14 variants did not exhibit main effects on lung cancer risk. Discussion: In addition to data pooling, future priorities of International Lung Cancer Consortium include coordinated genotyping and multistage validation for ongoing genome-wide association studies. (Cancer Epidemiol Biomarkers Prev 2008;17(11):3081-9)
    Type of Publication: Journal article published
    PubMed ID: 18990748
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; LUNG ; LUNG-CANCER ; DISEASE ; EPIDEMIOLOGY ; RISK ; GENE ; GENES ; GENETIC POLYMORPHISMS ; ASSOCIATION ; polymorphism ; HEALTH ; smoking ; SQUAMOUS-CELL CARCINOMA ; case-control studies ; lung neoplasms ; glutathione-S-transferase ; case-control study ; WORLDWIDE ; review ; METAANALYSIS ; GENOTYPE ; CHINESE POPULATION ; PUBLICATION BIAS ; DNA ADDUCT LEVELS ; NULL-GENOTYPE ; Asian continental ancestry group ; glutathione S-transferase pi ; GSTP1 ; HONG-KONG ; P1 POLYMORPHISMS ; PI-GENE
    Abstract: Lung cancer is the most common cancer worldwide. Polymorphisms in genes associated with carcinogen metabolism may modulate risk of disease. Glutathione S-transferase pi (GSTP1) detoxifies polycyclic aromatic hydrocarbons found in cigarette smoke and is the most highly expressed glutathione S-transferase in lung tissue. A polymorphism in the GSTP1 gene, an A-to-G transition in exon 5 (Ile105Val, 313A -〉 313G), results in lower activity among individuals who carry the valine allele. The authors present a meta- and a pooled analysis of case-control studies that examined the association between this polymorphism in GSTP1 and lung cancer risk (27 studies, 8,322 cases and 8,844 controls and 15 studies, 4,282 cases and 5,032 controls, respectively). Overall, the meta-analysis found no significant association between lung cancer risk and the GSTP1 exon 5 polymorphism. In the pooled analysis, there was an overall association (odds ratio = 1.11, 95% confidence interval: 1.03, 1.21) between lung cancer and carriage of the GSTP1 Val/Val or Ile/Val genotype compared with those carrying the Ile/Ile genotype. Increased risk varied by histologic type in Asians. There appears to be evidence for interaction between amount of smoking, the GSTP1 exon 5 polymorphism, and risk of lung cancer in whites
    Type of Publication: Journal article published
    PubMed ID: 19240225
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: APOPTOSIS ; CANCER ; carcinoma ; CELL ; LUNG ; MODEL ; PATHWAY ; PATHWAYS ; lung cancer ; LUNG-CANCER ; RISK ; GENE ; GENES ; METABOLISM ; CARCINOGENESIS ; ASSOCIATION ; SUSCEPTIBILITY ; VARIANTS ; AGE ; DNA-REPAIR ; smoking ; ADHESION ; CELL-ADHESION ; inflammation ; ONCOLOGY ; case-control study ; REGRESSION ; ASSOCIATIONS ; VARIANT ; CANDIDATE GENES ; METHYLENETETRAHYDROFOLATE REDUCTASE ; INCREASED RISK ; SQUAMOUS-CELL ; CHINESE POPULATION ; XUAN-WEI ; METHYLENE-TETRAHYDROFOLATE REDUCTASE ; GENE POLYMORPHISMS ; Genetic ; CENTRAL-EUROPE ; SEQUENCE VARIANTS
    Abstract: Background. Analysis of candidate genes in individual studies has had only limited success in identifying particular gene variants that are conclusively associated with lung cancer risk. In the International Lung Cancer Consortium (ILCCO), we conducted a coordinated genotyping study of 10 common variants selected because of their prior evidence of an association with lung cancer. These variants belonged to candidate genes from different cancer-related pathways including inflammation (IL1B), folate metabolism (MTHFR), regulatory function (AKAP9 and CAMKK1), cell adhesion (SEZL6) and apoptosis (FAS, FASL, TP53, TP53BP1 and BAT3). Methods. Genotype data from 15 ILCCO case-control studies were available for a total of 8431 lung cancer cases and 11 072 controls of European descent and Asian ethnic groups. Unconditional logistic regression was used to model the association between each variant and lung cancer risk. Results. Only the association between a non-synonymous variant of TP53BP1 (rs560191) and lung cancer risk was significant (OR = 0.91, P = 0.002). This association was more striking for squamous cell carcinoma (OR = 0.86, P = 6 x 10(-4)). No heterogeneity by center, ethnicity, smoking status, age group or sex was observed. In order to confirm this association, we included results for this variant from a set of independent studies (9966 cases/11 722 controls) and we reported similar results. When combining all these studies together, we reported an overall OR = 0.93 (0.89-0.97) (P = 0.001). This association was significant only for squamous cell carcinoma [OR = 0.89 (0.85-0.95), P = 1 x 10(-4)]. Conclusion. This study suggests that rs560191 is associated to lung cancer risk and further highlights the value of consortia in replicating or refuting published genetic associations
    Type of Publication: Journal article published
    PubMed ID: 20106900
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: LOCI ; GENOME-WIDE ASSOCIATION ; MISSING HERITABILITY
    Abstract: Objectives: We aimed at extending the Natural and Orthogonal Interaction (NOIA) framework, developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the performance of the NOIA statistical models using simulated data and lung cancer data. Methods: The NOIA statistical models are developed for additive, dominant, and recessive genetic models as well as for a binary environmental exposure. Using the Kronecker product rule, a NOIA statistical model is built to model gene-environment interactions. By treating the genotypic values as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control data. Results: Our simulations showed that power for testing associations while allowing for interaction using the NOIA statistical model is much higher than using functional models for most of the scenarios we simulated. When applied to lung cancer data, much smaller p values were obtained using the NOIA statistical model for either the main effects or the SNP-smoking interactions for some of the SNPs tested. Conclusion: The NOIA statistical models are usually more powerful than the functional models in detecting main effects and interaction effects for both quantitative traits and binary traits.
    Type of Publication: Journal article published
    PubMed ID: 22889990
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: UNITED-STATES ; BEHAVIOR ; SMOKERS ; CLUSTER ; GENOME-WIDE ASSOCIATION ; GENETIC-VARIATION ; NICOTINE DEPENDENCE ; INTERPLAY ; CHRNA5-CHRNA3-CHRNB4 ; QUANTITY
    Abstract: Background: Recent meta-analyses show strong evidence of associations among genetic variants in CHRNA5 on chromosome 15q25, smoking quantity, and lung cancer. This meta-analysis tests whether the CHRNA5 variant rs16969968 predicts age of smoking cessation and age of lung cancer diagnosis. Methods: Meta-analyses examined associations between rs16969968, age of quitting smoking, and age of lung cancer diagnosis in 24 studies of European ancestry (n = 29 072). In each dataset, we used Cox regression models to evaluate the association between rs16969968 and the two primary phenotypes (age of smoking cessation among ever smokers and age of lung cancer diagnosis among lung cancer case patients) and the secondary phenotype of smoking duration. Heterogeneity across studies was assessed with the Cochran Q test. All statistical tests were two-sided. Results: The rs16969968 allele (A) was associated with a lower likelihood of smoking cessation (hazard ratio [HR] = 0.95, 95% confidence interval [CI] = 0.91 to 0.98, P =.0042), and the AA genotype was associated with a four-year delay in median age of quitting compared with the GG genotype. Among smokers with lung cancer diagnoses, the rs16969968 genotype (AA) was associated with a four-year earlier median age of diagnosis compared with the low-risk genotype (GG) (HR = 1.08, 95% CI = 1.04 to 1.12, P = 1.1*10(-5)). Conclusion: These data support the clinical significance of the CHRNA5 variant rs16969968. It predicts delayed smoking cessation and an earlier age of lung cancer diagnosis in this meta-analysis. Given the existing evidence that this CHRNA5 variant predicts favorable response to cessation pharmacotherapy, these findings underscore the potential clinical and public health importance of rs16969968 in CHRNA5 in relation to smoking cessation success and lung cancer risk.d: Recent meta-analyses show strong evidence of associations among genetic variants in CHRNA5 on chromosome 15q25, smoking quantity, and lung cancer. This meta-analysis tests whether the CHRNA5 variant rs16969968 predicts age of smoking cessation and age of lung cancer diagnosis.
    Type of Publication: Journal article published
    PubMed ID: 25873736
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: BACKGROUND: Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. METHODS: Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N=12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium. RESULTS: Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR=0.48, 95%CI=0.30-0.75, p=0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR=0.68, 95%CI=0.61-0.77, p=4.9 *10-10). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype. CONCLUSION: We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke.
    Type of Publication: Journal article published
    PubMed ID: 27543155
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; LUNG ; lung cancer ; LUNG-CANCER ; EPIDEMIOLOGY ; RISK ; GENE ; GENES ; METABOLISM ; ASSOCIATION ; FREQUENCY ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; FREQUENCIES ; DELETION ; MALIGNANCIES ; GLUTATHIONE ; meta-analysis ; smoking ; INVOLVEMENT ; TOBACCO ; CHROMOSOMAL LOCALIZATION ; FACTOR-I ; lung neoplasms ; glutathione-S-transferase ; GLUTATHIONE S-TRANSFERASE ; MALIGNANCY ; TOBACCO-SMOKE ; GSTT1 ; METAANALYSIS ; ENVIRONMENTAL TOBACCO-SMOKE ; INTERVAL ; GENETIC-POLYMORPHISM ; pooled analysis ; CANDIDATE ; odds ratio ; tobacco smoke ; RISK-FACTOR ; E ; CHEMICALS ; genetic predisposition to disease ; ENVIRONMENTAL-FACTORS ; ADENOCARCINOMA SUSCEPTIBILITY ; disease susceptibility ; EPOXIDE HYDROLASE ; ETHYLENE-OXIDE ; GSTP1 POLYMORPHISMS ; INDIVIDUAL SENSITIVITY ; TISSUE DISTRIBUTION
    Abstract: Lung cancer is the most common malignancy in the Western world, and the main risk factor is tobacco smoking. Polymorphisms in metabolic genes may modulate the risk associated with environmental factors. The glutathione S-transferase theta 1 gene (GSTT1) is a particularly attractive candidate for lung cancer susceptibility because of its involvement in the metabolism of polycyclic aromatic hydrocarbons found in tobacco smoke and of other chemicals, pesticides, and industrial solvents. The frequency of the GSTT1 null genotype is lower among Caucasians (10-20%) than among Asians (50-60%). The authors present a meta- and a pooled analysis of case-control, genotype-based studies that examined the association between GSTT1 and lung cancer (34 studies, 7,629 cases and 10,087 controls for the meta-analysis; 34 studies, 7,044 cases and 10,000 controls for the pooled analysis). No association was observed between GSTT1 deletion and lung cancer for Caucasians (odds ratio (OR) = 0.99, 95% confidence interval (CI): 0.87, 1.12); for Asians, a positive association was found (OR = 1.28, 95% CI: 1.10, 1.49). In the pooled analysis, the odds ratios were not significant for either Asians (OR = 0.97, 95% CI: 0.83, 1.13) or Caucasians (OR = 1.09, 95% CI: 0.99, 1.21). No significant interaction was observed between GSTT1 and smoking on lung cancer, whereas GSTT1 appeared to modulate occupational-related lung cancer
    Type of Publication: Journal article published
    PubMed ID: 17000715
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001〉 P 〉 5x10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6x10(-7)) and MTMR2 at 11q21 (rs10501831, P = 3.1x10(-6)) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4x10(-7)) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05x10(-4) for KCNIP4, represented by rs9799795) and AC (P = 2.16x10(-4) for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range.
    Type of Publication: Journal article published
    PubMed ID: 26363033
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...