Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: DISEASE ; METABOLISM ; ALPHA ; ACID ; inactivation ; DIFFERENTIAL EXPRESSION ; 5-LIPOXYGENASE ; MOLECULAR-MECHANISMS ; prostaglandins ; NONALCOHOLIC FATTY LIVER
    Abstract: BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND RESULTS: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. CONCLUSIONS: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J on the one hand and PWD/PhJ on the other.
    Type of Publication: Journal article published
    PubMed ID: 25347188
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; INVASION ; tumor ; TUMOR-CELLS ; carcinoma ; CELL ; Germany ; CLASSIFICATION ; GENE-EXPRESSION ; GENOME ; PROTEIN ; PROTEINS ; TUMORS ; TIME ; kidney ; primary ; FLOW ; BIOLOGY ; CELL-CYCLE ; MOLECULAR-BIOLOGY ; BREAST ; breast cancer ; BREAST-CANCER ; PROGRESSION ; PATTERNS ; MEMBRANE ; METASTASIS ; genetics ; metastases ; CANCER-CELLS ; ONCOGENE ; heredity ; molecular biology ; molecular ; E-cadherin ; ONCOLOGY ; RE ; INCREASE ; LEVEL ; LOSSES ; REDUCED EXPRESSION ; ENGLAND ; INCREASES ; detachment ; cell junctions ; initial cell-cell contact
    Abstract: Vacuole membrane protein 1 (Vmp1) is described as a cancer-relevant cell cycle modulator, but the function of this protein and its mode of action in tumor progression are still unknown. In this study, we show that the VMP1 mRNA level is significantly reduced in kidney cancer metastases as compared to primary tumors. Further, VMP1 expression is also decreased in the invasive breast cancer cell lines HCC1954 and MDA-MB-231 as compared to the non-invasive cell lines MCF-12A, T-47D and MCF-7. We show for the first time that Vmp1 is a plasma membrane protein and an essential component of initial cell-cell contacts and tight junction formation. It interacts with the tight junction protein Zonula Occludens-1 and colocalizes in spots between neighboring HEK293 cells. Downregulation of VMP1 by RNAi results in loss of cell adherence, and increases the invasion capacity of the non-invasive kidney cancer cell line Caki-2. In conclusion, our findings establish Vmp1 to be a novel cell-cell adhesion protein and that its expression level determines the invasion and metastatic potential of cancer cells
    Type of Publication: Journal article published
    PubMed ID: 17724469
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RECEPTOR ; CANCER ; EXPRESSION ; SURVIVAL ; tumor ; Germany ; screening ; SYSTEM ; GENE ; GENE-EXPRESSION ; GENES ; GENOME ; HYBRIDIZATION ; SAMPLE ; SAMPLES ; TIME ; PATIENT ; prognosis ; T-CELLS ; BREAST ; breast cancer ; BREAST-CANCER ; IDENTIFICATION ; gene expression ; LYMPHOCYTES ; CARCINOMAS ; INVOLVEMENT ; IMMUNE-RESPONSE ; inflammation ; INFILTRATION ; RESOURCE ; METAANALYSIS ; IMMUNE-SYSTEM ; ESTROGEN ; lymphocyte infiltration ; estrogen receptor ; USA ; ONTOLOGIES ; SIGNATURES ; TIMES ; Computational microdissection
    Abstract: The involvement of the immune system for the course of breast cancer, as evidenced by varying degrees of lymphocyte infiltration (LI) into the tumor is still poorly understood. The aim of this study was to evaluate the prognostic value of LI in breast cancer samples using microarray-based screening for LI-associated genes. Starting from the observation that most published ER gene signatures are heavily influenced by the LI effect, we developed and applied a novel approach to dissect molecular signatures. Further, a meta-analysis encompassing 1,044 hybridizations showed that LI alone is not sufficient to highlight breast cancer patients with different prognosis. However, for ER positive patients, high LI was associated with shorter survival times, whereas for ER negative patients, high LI is significantly associated with longer survival. Annotation of LI, in addition to ER status, is important for breast cancer patient prognosis and may have implications for the future treatment of breast cancer
    Type of Publication: Journal article published
    PubMed ID: 18592372
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: Non-alcoholic fatty liver disease comprises a broad spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction, and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g., the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid, and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN) and low density lipoprotein receptor. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger cohort of patients and matched controls will confirm our preliminary findings presented here.
    Type of Publication: Journal article published
    PubMed ID: 22969728
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; INHIBITION ; DOMAIN ; resistance ; IMATINIB MESYLATE ; QUIESCENCE ; APOPTOSOME ; FIBROBLAST-LIKE CELLS ; IRON-SULFUR PROTEINS ; DNA METABOLISM
    Abstract: The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.
    Type of Publication: Journal article published
    PubMed ID: 25716227
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Non-alcoholic fatty liver disease (NAFLD) is a consequence of sedentary life style and high fat diets with an estimated prevalence of about 30% in western countries. It is associated with insulin resistance, obesity, glucose intolerance and drug toxicity. Additionally, polymorphisms within, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate with NAFLD. Several studies have already investigated later stages of the disease. This study explores the early steatosis stage of NAFLD with the aim of identifying molecular mechanisms underlying the etiology of NAFLD. We analyzed liver biopsies and serum samples from patients with high- and low-grade steatosis (also pre-disease states) employing transcriptomics, ELISA-based serum protein analyses and metabolomics. Here, we provide a detailed description of the various related datasets produced in the course of this study. These datasets may help other researchers find new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe disease states.
    Type of Publication: Journal article published
    PubMed ID: 26646939
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: IN-VITRO ; HEPATOCELLULAR-CARCINOMA ; IDENTIFICATION ; PATHOGENESIS ; SMOKERS ; NONALCOHOLIC STEATOHEPATITIS ; FATTY LIVER-DISEASE ; HYALINE BODIES ; LIPOTOXICITY ; AKR1B10
    Abstract: BACKGROUND: Pathogenesis and factors for determining progression of alcoholic and non-alcoholic steatosis to steatohepatitis with risk of further progression to liver cirrhosis and cancer are poorly understood. In the present study, we aimed to identify potential molecular signatures for discrimination of steatohepatitis from steatosis. METHODOLOGY AND RESULTS: Global microarray gene expression analysis was applied to unravel differentially expressed genes between steatohepatitis compared to steatosis and control samples. For functional annotation as well as the identification of disease-relevant biological processes of the differentially expressed genes the gene ontology (GO) database was used. Selected candidate genes (n = 46) were validated in 87 human liver samples from two sample cohorts by quantitative real-time PCR (qRT-PCR). The GO analysis revealed that genes down-regulated in steatohepatitis were mainly involved in metabolic processes. Genes up-regulated in steatohepatitis samples were associated with cancer progression and proliferation. In surgical liver resection samples, 39 genes and in percutaneous liver biopsies, 30 genes were significantly up-regulated in steatohepatitis. Furthermore, immunohistochemical investigation of human liver tissue revealed a significant increase of AKR1B10 protein expression in steatohepatitis. CONCLUSIONS: The development of steatohepatitis is characterized by distinct molecular changes. The most striking examples in this respect were KRT23 and AKR1B10, which we found to be highly differentially expressed in steatohepatitis compared to steatosis and normal liver. We propose that KRT23 and AKR1B10 may serve as future potential biomarkers for steatohepatitis as well as markers for progression to HCC.
    Type of Publication: Journal article published
    PubMed ID: 23071592
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; MICROSCOPY ; THERAPY ; GENES ; PROTEIN ; cell line ; DIFFERENTIATION ; MOLECULAR CHARACTERIZATION ; MONOCLONAL-ANTIBODY ; TUMORS ; LINES ; PATIENT ; DOMAIN ; ANTIGEN ; ANTIGENS ; CONTRAST ; CELL-LINES ; BREAST ; breast cancer ; BREAST-CANCER ; antibodies ; antibody ; TARGET ; DELETION ; IDENTIFICATION ; immunohistochemistry ; MEMBRANE ; CELL-LINE ; LINE ; VACCINES ; LOCALIZATION ; CANCER-PATIENTS ; IMMUNITY ; IMMUNOTHERAPY ; CANCER PATIENTS ; mutagenesis ; cell lines ; ONCOLOGY ; RECOMBINANT ; LIBRARIES ; development ; LEVEL ; analysis ; NUCLEAR ; tumor antigen ; BREAST-TUMORS ; USA ; CANCERS ; SPECIMENS
    Abstract: Antibody-based cancer immunotherapy relies on the identification and characterization of target antigens and the development of potent antibodies recognizing the target. Here we report the expression analysis and molecular characterization of the differentiation antigen NY-BR-1, which we previously identified by using the SEREX (serological analysis of recombinant cDNA expression libraries) method. Corroborating methodologies, including mRNA quantitation and immunoblotting show that NY-BR-1 is strongly expressed in 〉70% of 129 breast tumors. Application of a NY-BR-1 specific antibody demonstrated NY-BR-1 expression in primary and metastastic breast cancers. In contrast, most of the breast cancer cell lines tested, expressed only low NY-BR-1 levels. Importantly, confocal microscopy revealed that ectopically expressed NY-BR-1 localizes to the cytoplasm and the cell membrane. NY-BR-1 localization in breast cancer specimens was also confirmed by immunohistochemistry. Bioinformatic analysis and deletion mutagenesis further show that NY-BR-1 membrane localization is mediated by 2 cis-active membrane targeting domains. Biochemical surface labeling and FACS analysis of live cells further characterize NY-BR-1 as a transmembrane protein, which can be specifically recognized by the anti-NY-BR-1 antibody on the surface of vital cells. The strong expression of NY-BR-1 in breast tumors, its cytoplasmic and membrane localization and accessibility to an ectopically applied antibody now suggest to pursue NY-BR-1 as a potential target for antibody-based therapies in breast cancer patients. (c) 2007 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 17330232
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    facet.materialart.
    Unknown
    German Medical Science; Düsseldorf, Köln
    In:  27. Deutscher Krebskongress; 20060322-20060326; Berlin; DOCOP059 /20060320/
    Publication Date: 2006-04-21
    Keywords: ddc: 610
    Language: English
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...