Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 2397-2414 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A method for the calculation of the dielectric permittivity of isotropic and anisotropic homogeneous fluids is presented which, in the framework of the continuum approximation, adopts a realistic description of the molecular features, so overcoming some of the limits of the Onsager model. The Poisson equation for the molecular charge distribution contained in a cavity in a dielectric continuum in the presence of an external field is solved by a boundary element technique, which allows a detailed description of the cavity shape associated with a given molecular structure. The charge distribution is described in terms of point charges derived from ab initio calculations in vacuum, in addition to a set of interacting atom dipoles induced by all the electric fields experienced by the molecule in the condensed phase. The link between molecular features and bulk properties is established in a general way suitable for isotropic liquids and nematic phases, through the orientational distribution function of the molecule interacting with the applied field and the surrounding fluid. Numerical results are reported for the liquid phase of a set of selected organic compounds of different shape and polarity, and for the isotropic and nematic phases of 4-n-pentyl-4′-cyanobiphenyl (5CB). They show that a realistic description of the molecular features can have dramatic effects in the case of strongly anisometric molecules. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...