Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Median age at diagnosis in patients with glioblastoma (GB) is slowly increasing with an aging population in Western countries, and was 64years in 2006. The number of patients age 65 and older with GB will double in 2030 compared with 2000. Survival in this older cohort of patients is significantly less than seen in younger patients. This may in part be related to more aggressive biology of tumor, reduced use of standard management approaches, increased toxicity of available therapies, and increased presence of comorbidities in this older patient population. Limited data do support the use of more extensive resection in these patients. Randomized data support the use of post-operative radiotherapy (RT) versus supportive care, but do not demonstrate a benefit for the use of the standard 6weeks course of RT over hypofractionated RT given over 3weeks. Preliminary data of randomized studies raise the possibility of temozolomide alone as an option for these patients. The use of 6weeks of RT with concurrent and adjuvant temozolomide has been associated with reasonably good survival in several uncontrolled small series of selected older patients; however, this better outcome may be related to the selection of better prognosis patients rather than the specific therapy utilized. The current National Cancer Institute of Canada (NCIC) and European Organization for Research and Treatment of Cancer (EORTC) CE.6/26062/22061 randomized study of short course RT with or without concurrent and adjuvant temozolomide will help determine the optimal therapy for this older cohort with currently available therapies.
    Type of Publication: Journal article published
    PubMed ID: 22722053
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: brain ; EXPRESSION ; radiotherapy ; CLINICAL-TRIAL ; UNITED-STATES ; INTEGRIN ALPHA(V)BETA(3) ; MALIGNANT GLIOMA ; temozolomide ; RECURRENT GLIOBLASTOMA ; BEVACIZUMAB
    Abstract: BACKGROUND: Cilengitide is a selective alphavbeta3 and alphavbeta5 integrin inhibitor. Data from phase 2 trials suggest that it has antitumour activity as a single agent in recurrent glioblastoma and in combination with standard temozolomide chemoradiotherapy in newly diagnosed glioblastoma (particularly in tumours with methylated MGMT promoter). We aimed to assess cilengitide combined with temozolomide chemoradiotherapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. METHODS: In this multicentre, open-label, phase 3 study, we investigated the efficacy of cilengitide in patients from 146 study sites in 25 countries. Eligible patients (newly diagnosed, histologically proven supratentorial glioblastoma, methylated MGMT promoter, and age 〉/=18 years) were stratified for prognostic Radiation Therapy Oncology Group recursive partitioning analysis class and geographic region and centrally randomised in a 1:1 ratio with interactive voice response system to receive temozolomide chemoradiotherapy with cilengitide 2000 mg intravenously twice weekly (cilengitide group) or temozolomide chemoradiotherapy alone (control group). Patients and investigators were unmasked to treatment allocation. Maintenance temozolomide was given for up to six cycles, and cilengitide was given for up to 18 months or until disease progression or unacceptable toxic effects. The primary endpoint was overall survival. We analysed survival outcomes by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00689221. FINDINGS: Overall, 3471 patients were screened. Of these patients, 3060 had tumour MGMT status tested; 926 patients had a methylated MGMT promoter, and 545 were randomly assigned to the cilengitide (n=272) or control groups (n=273) between Oct 31, 2008, and May 12, 2011. Median overall survival was 26.3 months (95% CI 23.8-28.8) in the cilengitide group and 26.3 months (23.9-34.7) in the control group (hazard ratio 1.02, 95% CI 0.81-1.29, p=0.86). None of the predefined clinical subgroups showed a benefit from cilengitide. We noted no overall additional toxic effects with cilengitide treatment. The most commonly reported adverse events of grade 3 or worse in the safety population were lymphopenia (31 [12%] in the cilengitide group vs 26 [10%] in the control group), thrombocytopenia (28 [11%] vs 46 [18%]), neutropenia (19 [7%] vs 24 [9%]), leucopenia (18 [7%] vs 20 [8%]), and convulsion (14 [5%] vs 15 [6%]). INTERPRETATION: The addition of cilengitide to temozolomide chemoradiotherapy did not improve outcomes; cilengitide will not be further developed as an anticancer drug. Nevertheless, integrins remain a potential treatment target for glioblastoma. FUNDING: Merck KGaA, Darmstadt, Germany.
    Type of Publication: Journal article published
    PubMed ID: 25163906
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems.
    Type of Publication: Journal article published
    PubMed ID: 26250565
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: BACKGROUND: Outcome of low-grade glioma (WHO grade II) is highly variable, reflecting molecular heterogeneity of the disease. We compared two different, single-modality treatment strategies of standard radiotherapy versus primary temozolomide chemotherapy in patients with low-grade glioma, and assessed progression-free survival outcomes and identified predictive molecular factors. METHODS: For this randomised, open-label, phase 3 intergroup study (EORTC 22033-26033), undertaken in 78 clinical centres in 19 countries, we included patients aged 18 years or older who had a low-grade (WHO grade II) glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma) with at least one high-risk feature (aged 〉40 years, progressive disease, tumour size 〉5 cm, tumour crossing the midline, or neurological symptoms), and without known HIV infection, chronic hepatitis B or C virus infection, or any condition that could interfere with oral drug administration. Eligible patients were randomly assigned (1:1) to receive either conformal radiotherapy (up to 50.4 Gy; 28 doses of 1.8 Gy once daily, 5 days per week for up to 6.5 weeks) or dose-dense oral temozolomide (75 mg/m2 once daily for 21 days, repeated every 28 days [one cycle], for a maximum of 12 cycles). Random treatment allocation was done online by a minimisation technique with prospective stratification by institution, 1p deletion (absent vs present vs undetermined), contrast enhancement (yes vs no), age (〈40 vs 〉/=40 years), and WHO performance status (0 vs 〉/=1). Patients, treating physicians, and researchers were aware of the assigned intervention. A planned analysis was done after 216 progression events occurred. Our primary clinical endpoint was progression-free survival, analysed by intention-to-treat; secondary outcomes were overall survival, adverse events, neurocognitive function (will be reported separately), health-related quality of life and neurological function (reported separately), and correlative analyses of progression-free survival by molecular markers (1p/19q co-deletion, MGMT promoter methylation status, and IDH1/IDH2 mutations). This trial is closed to accrual but continuing for follow-up, and is registered at the European Trials Registry, EudraCT 2004-002714-11, and at ClinicalTrials.gov, NCT00182819. FINDINGS: Between Sept 23, 2005, and March 26, 2010, 707 patients were registered for the study. Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 patients to receive either radiotherapy (n=240) or temozolomide chemotherapy (n=237). At a median follow-up of 48 months (IQR 31-56), median progression-free survival was 39 months (95% CI 35-44) in the temozolomide group and 46 months (40-56) in the radiotherapy group (unadjusted hazard ratio [HR] 1.16, 95% CI 0.9-1.5, p=0.22). Median overall survival has not been reached. Exploratory analyses in 318 molecularly-defined patients confirmed the significantly different prognosis for progression-free survival in the three recently defined molecular low-grade glioma subgroups (IDHmt, with or without 1p/19q co-deletion [IDHmt/codel], or IDH wild type [IDHwt]; p=0.013). Patients with IDHmt/non-codel tumours treated with radiotherapy had a longer progression-free survival than those treated with temozolomide (HR 1.86 [95% CI 1.21-2.87], log-rank p=0.0043), whereas there were no significant treatment-dependent differences in progression-free survival for patients with IDHmt/codel and IDHwt tumours. Grade 3-4 haematological adverse events occurred in 32 (14%) of 236 patients treated with temozolomide and in one (〈1%) of 228 patients treated with radiotherapy, and grade 3-4 infections occurred in eight (3%) of 236 patients treated with temozolomide and in two (1%) of 228 patients treated with radiotherapy. Moderate to severe fatigue was recorded in eight (3%) patients in the radiotherapy group (grade 2) and 16 (7%) in the temozolomide group. 119 (25%) of all 477 patients had died at database lock. Four p
    Type of Publication: Journal article published
    PubMed ID: 27686946
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: PURPOSE: EORTC 26082 assessed the activity of temsirolimus in patients with newly diagnosed glioblastoma harboring an unmethylated O6 methylguanine-DNA-methyltransferase (MGMT) promoter. EXPERIMENTAL DESIGN: Patients (n = 257) fulfilling eligibility criteria underwent central MGMT testing. Patients with MGMT unmethylated glioblastoma (n = 111) were randomized 1:1 between standard chemo-radiotherapy with temozolomide or radiotherapy plus weekly temsirolimus (25 mg). Primary endpoint was overall survival at 12 months (OS12). A positive signal was considered 〉38 patients alive at 12 months in the per protocol population. A noncomparative reference arm of 54 patients evaluated the assumptions on OS12 in a standard-treated cohort of patients. Prespecified post hoc analyses of markers reflecting target activation were performed. RESULTS: Both therapies were administered per protocol with a median of 13 cycles of maintenance temsirolimus. Median age was 55 and 58 years in the temsirolimus and standard arms, the WHO performance status 0 or 1 for most patients (95.5%). In the per protocol population, 38 of 54 patients treated with temsirolimus reached OS12. The actuarial 1-year survival was 72.2% [95% confidence interval (CI), 58.2-82.2] in the temozolomide arm and 69.6% (95% CI, 55.8-79.9) in the temsirolimus arm [hazard ratio (HR) 1.16; 95% CI, 0.77-1.76; P = 0.47]. In multivariable prognostic analyses of clinical and molecular factors, phosphorylation of mTORSer2448 in tumor tissue (HR 0.13; 95% CI, 0.04-0.47; P = 0.002), detected in 37.6%, was associated with benefit from temsirolimus. CONCLUSIONS: Temsirolimus was not superior to temozolomide in patients with an unmethylated MGMT promoter. Phosphorylation of mTORSer2448 in the pretreatment tumor tissue may define a subgroup benefitting from mTOR inhibition. Clin Cancer Res; 22(19); 4797-806. (c)2016 AACR.
    Type of Publication: Journal article published
    PubMed ID: 27143690
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Significant progress has been made in the molecular diagnostic subtyping of brain tumors, in particular gliomas. In contrast to the classical molecular markers in this field, p53 and epidermal growth factor receptor (EGFR) status, the clinical significance of which has remained controversial, at least three important molecular markers with clinical implications have now been identified: 1p/19q codeletion, O(6)-methylguanine methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase-1 (IDH1) mutations. All three are favorable prognostic markers. 1p/19q codeletion and IDH1 mutations are also useful to support and extend the histological classification of gliomas since they are strongly linked to oligodendroglial morphology and grade II/III gliomas, as opposed to glioblastoma, respectively. MGMT promoter methylation is the only potentially predictive marker, at least for alkylating agent chemotherapy in glioblastoma. Beyond these classical markers, the increasing repertoire of anti-angiogenic agents that are currently explored within registration trials for gliomas urgently calls for efforts to identify molecular markers that predict the benefit derived from these novel treatments, too.
    Type of Publication: Journal article published
    PubMed ID: 20862485
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: radiotherapy ; SURVIVAL ; TUMORS ; PROGNOSTIC FACTORS ; pathology ; RANDOMIZED TRIAL ; GLIOMAS ; HYPERMETHYLATION ; PHASE-III ; EGFR ; MGMT ; ADJUVANT TEMOZOLOMIDE ; temozolomide ; GLIOBLASTOMA ; MGMT GENE ; IDH1 ; EORTC ; IDH2 MUTATIONS ; Glioblastoma with oligodendroglioma-like component ; NCIC TRIAL ; Pseudopalisading necrosis
    Abstract: Glioblastoma (GBM) is a morphologically heterogeneous tumor type with a median survival of only 15 months in clinical trial populations. However, survival varies greatly among patients. As part of a central pathology review, we addressed the question if patients with GBM displaying distinct morphologic features respond differently to combined chemo-radiotherapy with temozolomide. Morphologic features were systematically recorded for 360 cases with particular focus on the presence of an oligodendroglioma-like component and respective correlations with outcome and relevant molecular markers. GBM with an oligodendroglioma-like component (GBM-O) represented 15% of all confirmed GBM (52/339) and was not associated with a more favorable outcome. GBM-O encompassed a pathogenetically heterogeneous group, significantly enriched for IDH1 mutations (19 vs. 3%, p = 0.003) and EGFR amplifications (71 vs. 48%, p = 0.04) compared with other GBM, while co-deletion of 1p/19q was found in only one case and the MGMT methylation frequency was alike (47 vs. 46%). Expression profiles classified most of the GBM-O into two subtypes, 36% (5/14 evaluable) as proneural and 43% as classical GBM. The detection of pseudo-palisading necrosis (PPN) was associated with benefit from chemotherapy (p = 0.0002), while no such effect was present in the absence of PPN (p = 0.86). In the adjusted interaction model including clinical prognostic factors and MGMT status, PPN was borderline nonsignificant (p = 0.063). Taken together, recognition of an oligodendroglioma-like component in an otherwise classic GBM identifies a pathogenetically mixed group without prognostic significance. However, the presence of PPN may indicate biological features of clinical relevance for further improvement of therapy.
    Type of Publication: Journal article published
    PubMed ID: 22249618
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: ASTROCYTOMAS ; BRAIN-TUMORS
    Abstract: Isocitrate dehydrogenase (IDH) mutational testing is becoming increasingly important. For this, robust and reliable assays are needed. We tested the variation of results between six laboratories of testing for IDH mutations. Each laboratory received five unstained slides from 31 formalin-fixed paraffin-embedded (FFPE) glioma samples, and followed its own standard IDH diagnostic routine. All laboratories used immunohistochemistry (IHC) with an antibody against the most frequent IDH1 mutation (R132H) as a first step. Three laboratories then sequenced only IHC negative cases while the others sequenced all cases. Based on the overall analysis, 13 samples from 11 tumors had an R132H mutation and one tumor showed an R132G mutation. Results of IHC for IDH1 R132H mutations in all six laboratories were completely in agreement, and identified all R132H mutations. Upon sequencing the results of two laboratories deviated from those of the others. After a review of the entire diagnostic process, on repeat (blinded) testing one laboratory was completely in agreement with the overall result. A change in technique did only partially improve the results in the other laboratory. IHC for the IDH1 R132H mutation is very reliable and consistent across laboratories. IDH sequencing procedures yielded inconsistent results in 2 out of 6 laboratories. Quality assurance is pivotal before IDH testing is made part of clinical management of patients.
    Type of Publication: Journal article published
    PubMed ID: 23358936
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: Brain disorders pose major challenges to medicine and treatment innovation. This is because their spectrum spans inflammatory, degenerative, traumatic/ischaemic, and neoplastic disease processes with a complex and often ill- understood aetiology. An improved genetic and genomic understanding of specific disease pathways offers new approaches to these challenges, but at present it is in its infancy. Here, we review different aspects of the challenges facing neuromedicine, give examples of where there are advances, and highlight challenges to be overcome. We see that some disorders such as Huntington's disease are the product of single gene mutations, whose discovery has been leading to the development of new targeted interventions. In the field of neurosurgery, the identification of a number of mutations allows an elaborated genetic analysis of brain tumours and opens the door to individualised therapies. Psychiatric disorders remain the area where progress is slow. Genetic analyses show that for major common disorders such as schizophrenia and depression there are no single gene alterations which offer options for targeted therapy development. However, new approaches are being developed to leverage genetic information to predict patients' responses to treatment. These recent developments hold promise for early diagnosis, follow-up with personalised treatments with adjusted therapeutic doses, predictable responses, reduced adverse drug reactions, and personal health planning. The scenario is promising but calls for increased support for curiosity-driven research into the mechanisms of normal brain functioning as well as challenging adaptations of health care and research infrastructures, encompassing legal frameworks for analysing large amounts of personal data, a flexible regulatory framework for correlating big data analyses in cooperative networks between academia and the drug development industry, and finally new strategies for brain banking in order to increase access to brain tissue samples. To make personalised medicine for brain disorders a reality, a joint effort between all relevant stakeholders - among which patients and patient organisations should play an important role - is required.
    Type of Publication: Journal article published
    PubMed ID: 27238144
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: BACKGROUND: Bevacizumab is approved for the treatment of patients with progressive glioblastoma on the basis of uncontrolled data. Data from a phase 2 trial suggested that the addition of bevacizumab to lomustine might improve overall survival as compared with monotherapies. We sought to determine whether the combination would result in longer overall survival than lomustine alone among patients at first progression of glioblastoma. METHODS: We randomly assigned patients with progression after chemoradiation in a 2:1 ratio to receive lomustine plus bevacizumab (combination group, 288 patients) or lomustine alone (monotherapy group, 149 patients). The methylation status of the promoter of O(6)-methylguanine-DNA methyltransferase (MGMT) was assessed. Health-related quality of life and neurocognitive function were evaluated at baseline and every 12 weeks. The primary end point of the trial was overall survival. RESULTS: A total of 437 patients underwent randomization. The median number of 6-week treatment cycles was three in the combination group and one in the monotherapy group. With 329 overall survival events (75.3%), the combination therapy did not provide a survival advantage; the median overall survival was 9.1 months (95% confidence interval [CI], 8.1 to 10.1) in the combination group and 8.6 months (95% CI, 7.6 to 10.4) in the monotherapy group (hazard ratio for death, 0.95; 95% CI, 0.74 to 1.21; P=0.65). Locally assessed progression-free survival was 2.7 months longer in the combination group than in the monotherapy group: 4.2 months versus 1.5 months (hazard ratio for disease progression or death, 0.49; 95% CI, 0.39 to 0.61; P〈0.001). Grade 3 to 5 adverse events occurred in 63.6% of the patients in the combination group and 38.1% of the patients in the monotherapy group. The addition of bevacizumab to lomustine affected neither health-related quality of life nor neurocognitive function. The MGMT status was prognostic. CONCLUSIONS: Despite somewhat prolonged progression-free survival, treatment with lomustine plus bevacizumab did not confer a survival advantage over treatment with lomustine alone in patients with progressive glioblastoma. (Funded by an unrestricted educational grant from F. Hoffmann-La Roche and by the EORTC Cancer Research Fund; EORTC 26101 ClinicalTrials.gov number, NCT01290939 ; Eudra-CT number, 2010-023218-30 .).
    Type of Publication: Journal article published
    PubMed ID: 29141164
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...