Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: IN-VITRO ; CELL-PROLIFERATION ; TYROSINE KINASE ; MYELOPROLIFERATIVE DISEASE ; FAMILY KINASES ; CHRONIC EOSINOPHILIC LEUKEMIA ; FACTOR-ALPHA RECEPTOR ; HYPEREOSINOPHILIC SYNDROME ; HOMOLOGY-2 DOMAINS ; T674I MUTATION
    Abstract: FIP1L1-PDGFRA is a constitutively activated kinase described in chronic eosinophilic leukemia (CEL) and hypereosinophilic syndrome (HES). Imatinib is clinically active in FIP1L1-PDGFRA-positive diseases. Using in vitro screening to identify imatinib-resistant mutations, we frequently detected a Phe to Ser exchange at position 604 (F604S) of FIP1L1-PDGFRA alone or in combination with other exchanges. Surprisingly, FIP1L1-PDGFRA/F604S did not increase the biochemical or cellular IC50 value of imatinib when compared with unmutated FIP1L1-PDGFRA. However, FIP1L1-PDGFRA/F604S more efficiently induced growth factor independence in cell lines and primary mouse bone marrow cells. Pulse chase analysis revealed that the F604S exchange strongly stabilized FIP1L1-PDGFRA/F604S. The F604S mutation creates a binding site for the phosphatase domain of SHP-2, leading to lower autophosphorylation of FIP1L1-PDGFRA/F604S. This is associated with a reduced activation of SRC and CBL by FIP1L1-PDGFRA/F604S compared with the unmutated oncogene. As SRC inhibition and knockdown resulted in FIP1L1-PDGFRA stabilization, this explains the extended half-life of FIP1L1-PDGFRA/F604S. Interestingly, FIP1L1-PDGFRA/L629P, a recently identified mutation in an imatinib-resistant CEL patient, also showed protein stabilization similar to that observed with FIP1L1-PDGFRA/F604S. Therefore, resistance mutations in FIP1L1-PDGFRA that do not interfere with drug binding but rather increase target protein stability seem to be one of the drug-resistance mechanisms in FIP1L1-PDGFRA-positive disease.
    Type of Publication: Journal article published
    PubMed ID: 25761934
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Circulating cell-free DNA (cfDNA) released from cancerous tissues has been found to harbor tumor-associated alterations and to represent the molecular composition of the tumor. Recent advances in technologies, especially in next-generation sequencing, enable the analysis of low amounts of cfDNA from body fluids. We analyzed the exomes of tumor tissue and matched serum samples to investigate the molecular representation of the tumor exome in cfDNA. To this end, we implemented a workflow for sequencing of cfDNA from low serum volumes (200 mul) and performed whole-exome sequencing (WES) of serum and matched tumor tissue samples from six non-small cell lung cancer (NSCLC) patients and two control sera. Exomes, including untranslated regions (UTRs) of cfDNA were sequenced with an average coverage of 68.5x. Enrichment efficiency, target coverage, and sequencing depth of cfDNA reads were comparable to those from matched tissues. Discovered variants were compared between serum and tissue as well as to the COSMIC database of known mutations. Although not all tissue variants could be confirmed in the matched serum, up to 57% of the tumor variants were reflected in matched cfDNA with mutations in PIK3CA, ALK, and PTEN as well as variants at COSMIC annotated sites in all six patients analyzed. Moreover, cfDNA revealed a mutation in MTOR, which was not detected in the matched tissue, potentially from an untested region of the heterogeneous primary tumor or from a distant metastatic clone. WES of cfDNA may provide additional complementary molecular information about clinically relevant mutations and the clonal heterogeneity of the tumors.
    Type of Publication: Journal article published
    PubMed ID: 27529345
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; mechanisms ; CHRONIC MYELOGENOUS LEUKEMIA ; P27(KIP1) ; BCR-ABL ; SELF-RENEWAL ; REPOPULATION ; SKP2 ; F-BOX PROTEINS ; POOL SIZE
    Abstract: Cyclin-dependent kinase subunit 1 (Cks1) is a critical rate-limiting component of the Skp1-Cullin1-Skp2 (SCFSkp2) ubiquitin ligase that controls cell cycle inhibitor abundance. Cyclin-dependent kinase (Cdk) inhibitors (CKIs) regulate hematopoietic stem cell (HSC) self-renewal, regeneration after cytotoxic stress and tumor cell proliferation. We thus studied the role of Cks1 in HSC and in a prototypic stem cell disorder, chronic myeloid leukemia (CML). Cks1 transcript was highly expressed in Lin-Sca-1+Kit+ (LSK) HSC, and the loss resulted in accumulation of the SCFSkp2/Cks1 substrates p21, p27, p57 and p130 particularly in CD150+ LSK cells. This accumulation correlated with decreased proliferation and accumulation of Cks1-/- HSC, slower regeneration after stress and prolonged HSC quiescence. At the hematopoietic progenitor (HPC) level, loss of Cks1 sensitized towards apoptosis. In CML, Cks1 expression was increased, and treatment with the Abl kinase inhibitor, imatinib, reduced Cks1 expression. Also, we found that Cks1 is critical for Bcr-Abl-induced cytokine-independent clonogenic activity. In conclusion, our study presents a novel function of Cks1 in maintaining HSC/HPC homeostasis and shows that Cks1 is a possible target in therapies aimed at the SCFSkp2/Cks1 complex that controls CKI abundance and cancer cell proliferation.Oncogene advance online publication, 24 November 2014; doi:10.1038/onc.2014.364.
    Type of Publication: Journal article published
    PubMed ID: 25417705
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia.
    Type of Publication: Journal article published
    PubMed ID: 27965168
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: Malignant tumors release tumor cells and fragments of nucleic acids into the bloodstream. Liquid biopsies are non-invasive blood tests that detect circulating tumor cells (CTC) and circulating nucleic acids such as mRNA, microRNA, and cell-free circulating tumor DNA, also known as ctDNA. The presence of ctDNA or CTCs in the plasma has prognostic impact. Since ctDNA contains tumor-specific mutations, its detection in the blood or other body fluids can predict response to treatment and relapse. Moreover, repeated analysis and quantitation of ctDNA can inform about changes in clonal composition over time and thus allow dynamic treatment stratification. Today, the routine clinical use of liquid biopsy diagnostic tests is limited; however, in the near future, they might become commonly used sensitive and specific biomarkers to guide cancer treatment. This review will summarize recent findings on the use of ctDNA for monitoring response to therapy and dynamic genetic treatment stratification.
    Type of Publication: Journal article published
    PubMed ID: 28693026
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Epithelioid hemangioendothelioma (EHE) is a rare, vascular sarcoma. Visceral forms arise in the liver/ lungs. We review the clinical and molecular phenotype of pediatric visceral EHE based on the case of a 9-year-old male child with EHE of the liver/lungs. His tumor expressed the EHE-specific fusion oncogene WWTR1-CAMTA1. Molecular characterization revealed a low somatic mutation rate and activated interferon signaling, angiogenesis regulation, and blood vessel remodeling. After polychemotherapy and resection of lung tumors, residual disease remained stable on oral lenalidomide. Literature review identified another 24 children with EHE of the liver/lungs. Most presented with multifocal, systemic disease. Only those who underwent complete resection achieved complete remission. Four children experienced rapid progression and died. In six children, disease remained stable for years without therapy. Two patients died from progressive EHE 21 and 24 years after first diagnosis. Natural evolution of pediatric visceral EHE is variable, and long-term prognosis remains unclear.
    Type of Publication: Journal article published
    PubMed ID: 28598585
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Abstract: Acute Graft-versus-host disease (GVHD) is a major immunological complication after allogeneic hematopoietic cell transplantation and a better understanding of the molecular regulation of the disease could help to develop novel targeted therapies. Here we found that a G/C polymorphism within the human microRNA-146a (miR-146a) gene of transplant recipients, which causes reduced miR-146a levels, was strongly associated with the risk of developing severe acute GVHD (n=289). In mice, deficiency of miR-146a in the hematopoietic system or transfer of recipient-type miR-146a(-/-) dendritic cells (DCs) enhanced GVHD, while miR-146a mimic-transfected DCs ameliorated disease. Mechanistically, lack of miR-146a enhanced JAK2-STAT1 pathway activity, which led to higher expression of class II-transactivator (CIITA) and consecutively increased MHCII-levels on DCs. Inhibition of JAK1/2 or CIITA knockdown in DCs prevented miR-146a(-/-) DC-induced GVHD exacerbation. Consistent with our findings in mice, patients with the miR-146a polymorphism rs2910164 in hematopoietic cells displayed higher MHCII levels on monocytes, which could be targeted by JAK1/2 inhibition. Our findings indicate that the miR-146a polymorphism rs2910164 identifies patients at high risk for GVHD before allo-HCT. Functionally we show that miR-146a acts as a central regulator of recipient-type DC activation during GVHD by dampening the pro-inflammatory JAK-STAT/CIITA/MHCII axis, which provides a scientific rationale for early JAK1/2 inhibition in selected patients.
    Type of Publication: Journal article published
    PubMed ID: 28484267
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: Recent evidence has revealed that oncogenic mutations may confer immune escape. A better understanding of how an oncogenic mutation affects immunosuppressive programmed death ligand 1 (PD-L1) expression may help in developing new therapeutic strategies. We show that oncogenic JAK2 (Janus kinase 2) activity caused STAT3 (signal transducer and activator of transcription 3) and STAT5 phosphorylation, which enhanced PD-L1 promoter activity and PD-L1 protein expression in JAK2(V617F)-mutant cells, whereas blockade of JAK2 reduced PD-L1 expression in myeloid JAK2(V617F)-mutant cells. PD-L1 expression was higher on primary cells isolated from patients with JAK2(V617F)-myeloproliferative neoplasms (MPNs) compared to healthy individuals and declined upon JAK2 inhibition. JAK2(V617F) mutational burden, pSTAT3, and PD-L1 expression were highest in primary MPN patient-derived monocytes, megakaryocytes, and platelets. PD-1 (programmed death receptor 1) inhibition prolonged survival in human MPN xenograft and primary murine MPN models. This effect was dependent on T cells. Mechanistically, PD-L1 surface expression in JAK2(V617F)-mutant cells affected metabolism and cell cycle progression of T cells. In summary, we report that in MPN, constitutive JAK2/STAT3/STAT5 activation, mainly in monocytes, megakaryocytes, and platelets, caused PD-L1-mediated immune escape by reducing T cell activation, metabolic activity, and cell cycle progression. The susceptibility of JAK2(V617F)-mutant MPN to PD-1 targeting paves the way for immunomodulatory approaches relying on PD-1 inhibition.
    Type of Publication: Journal article published
    PubMed ID: 29467301
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD(+) leukemia cells. This synergized with the allogeneic CD8(+) T cell response, leading to long-term survival in six mouse models of FLT3-ITD(+) AML. Sorafenib-related IL-15 production caused an increase in CD8(+)CD107a(+)IFN-gamma(+) T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD(+) AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8(+) T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.
    Type of Publication: Journal article published
    PubMed ID: 29431743
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: During the last six years, several innovative, systemic therapies for the treatment of metastatic malignant melanoma (MM) have emerged. Conventional chemotherapy has been superseded by novel first-line therapies, including systemic immunotherapies (anti-CTLA4 and anti-PD1; authorization of anti-PDL1 is anticipated) and therapies targeting specific mutations (BRAF, NRAS, and c-KIT). Thus, treating physicians are confronted with new challenges, such as stratifying patients for appropriate treatments and monitoring long-term responders for progression. Consequently, reliable methods for monitoring disease progression or treatment resistance are necessary. Localized and advanced cancers may generate circulating tumor cells and circulating tumor DNA (ctDNA) that can be detected and quantified from peripheral blood samples (liquid biopsy). For melanoma patients, liquid biopsy results may be useful as novel predictive biomarkers to guide therapeutic decisions, particularly in the context of mutation-based targeted therapies. The challenges of using liquid biopsy include strict criteria for the phenotypic nature of circulating MM cells or their fragments and the instability of ctDNA in blood. The limitations of liquid biopsy in routine diagnostic testing are discussed in this review.
    Type of Publication: Journal article published
    PubMed ID: 29512873
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...