Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1985-1989
  • 1920-1924
  • 1996  (3)
  • 1
    ISSN: 1432-072X
    Keywords: Key words Glucose-fructose oxidoreductase ; Zymomonas mobilis ; Gfo-deficient mutant ; Sorbitol ; Protein export ; Signal sequence ; Periplasmic NADP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Glucose-fructose oxidoreductase (GFOR) of the gram-negative bacterium Zymomonas mobilis is a periplasmic enzyme with the tightly bound cofactor NADP. The preprotein carries an unusually long N-terminal signal sequence of 52 amino acid residues. A sorbitol-negative mutant strain (ACM3963) was found to be deficient in GFOR activity and was used for the expression of plasmid-borne copies of the wild-type gfo gene or of alleles encoding alterations in the signal sequence of the pre-GFOR protein. Z. mobilis cells with the wild-type gfo allele translocated pre-GFOR, at least partially, via the Sec pathway since CCCP (carboxylcyanide-m-chlorophenylhydrazone; uncoupler of proton motive force) or sodium azide (inhibitor of SecA) abolished the processing of GFOR. A gfo allele with the hydrophobic region of the signal sequence removed (residues 32–46; Δ32–46) led to a protein that was no longer processed, but showed full enzymatic activity (180 U/mg) and had the cofactor NADP firmly bound. A deletion in the n-region of the signal sequence (residues 2–20; Δ2–20) or exchange of the entire GFOR signal sequence with the signal sequence of gluconolactonase of Z. mobilis led to active and processed GFOR. Strain ACM3963 could not grow in the presence of high sugar concentrations (1 M sucrose) unless sorbitol was added. The presence of the plasmid-borne gfo wild-type allele or of the Δ2–20 deletion led to the restoration of growth on media with 1 M sucrose, whereas the presence of the Δ32–46 deletion led to a growth behavior similar to that of strain ACM3963, with no sorbitol formation from sucrose.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 145 (1996), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Sucrose, glucose and fructose are degraded in the Gram-negative bacterium Zymomonas mobilis via an anaerobic version of the Entner-Doudoroff pathway, to an equimolar mixture of ethanol and carbon dioxide. Sucrose is split extracellularly into glucose and fructose (or levan). The two sugars are transported into the cell via facilitated diffusion (uniport). A periplasmic enzyme, glucose-fructose oxidoreductase, provides the novel compatible solute, sorbitol, to counteract detrimental osmotic stress. Carbon flux and its regulation, and branches into anabolic pathways are discussed together with recent approaches to broaden the substrate range of the bacterium.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Recombinant transaldolase from Escherichia coli, an enzyme of the pentose phosphate pathway has been crystallized by the vapor-diffusion method using polyethylene glycol 6000 as precipitant. The crystals are orthorhombic, space group P212121 with cell dimensions a = 68.9, b = 91.3 and c = 130.5 Å and diffract to 2 Å resolution on a conventional X-ray source. The asymmetric unit very likely contains two subunits, corresponding to a packing density of 2.9 Å3 Da−1.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...