Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Articles: DFG German National Licenses  (2)
  • 1995-1999  (2)
  • 1998  (2)
  • 1
    ISSN: 0887-6266
    Keywords: polyethylene ; poly(butylene terephthalate) ; blend ; rheology ; Palierne's model ; morphology ; differential scanning calorimetry ; crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Crystallization at high supercooling of polybutylene terephthalate (PBT) droplets dispersed in a molten polyethylene (PE) matrix was investigated through rheological and DSC experiments. The Palierne's emulsion model was used as a theoretical framework for studying the viscoelastic behavior of the blends in different ranges of temperature: on the one hand, when the two polymers are molten (T 〉 225°C) and on the other hand, when PBT droplets are at high supercooling in the molten PE matrix (130°C 〈 T 〈 205°C). From rheological experimental evidences it was shown that molten and solidified droplets coexist at high supercooling. The Palierne's model was then successfully adapted to take into account the three phases (molten PE, molten PBT droplets, and solidified PBT droplets). The evolution of the behavior with the temperature is consistent with the growing amount of crystallized droplets. Moreover, a calculation taking into account the droplets size distribution and the number of nuclei is introduced to explain the crystallization behavior of three different blend ratios.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2573-2585, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0029-5981
    Keywords: variational elements method ; multipole expansion ; acoustic radiation ; variational formulation ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The acoustic radiation of general structures with Neumann's boundary condition using Variational Boundary Element Method (VBEM) is considered. The classical numerical implementation of the VBEM suffers from the computation cost associated with double surface integration. To alleviate this limitation, a novel acceleration method is proposed. The method is based on the expansion of the cross influence matrices in terms of multipoles using the expansion of the Green's function in terms of spherical Bessel functions. Since the resulting multipoles are not dependent on the elements locations, large computation time savings are achieved. Moreover, it is shown that by accounting for the monopole, dipole and quadrupole terms in the multipole expansion, the classical convergence criteria usually used in boundary element guarantee convergence of the proposed method. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...